llama/ggml: add LLM training support (#10544)
* llama/ggml: add LLM training support more compact progress bar llama_save_model_to_file llama_opt_param_filter ggml_graph_dup force_grads refactor ggml_opt, fix test-opt * remove logits_all * refactor CUDA implementation for ACC * reset graph at beginning of opt period
This commit is contained in:
parent
064cc596ac
commit
10d2af0eaa
31 changed files with 1415 additions and 359 deletions
17
examples/training/README.md
Normal file
17
examples/training/README.md
Normal file
|
@ -0,0 +1,17 @@
|
|||
# llama.cpp/examples/training
|
||||
|
||||
This directory contains examples related to language model training using llama.cpp/GGML.
|
||||
So far finetuning is technically functional (for FP32 models and limited hardware setups) but the code is very much WIP.
|
||||
Finetuning of Stories 260K and LLaMA 3.2 1b seems to work with 24 GB of memory.
|
||||
**For CPU training, compile llama.cpp without any additional backends such as CUDA.**
|
||||
**For CUDA training, use the maximum number of GPU layers.**
|
||||
|
||||
Proof of concept:
|
||||
|
||||
``` sh
|
||||
export model_name=llama_3.2-1b && export quantization=f32
|
||||
./build/bin/finetune --file wikitext-2-raw/wiki.test.raw -ngl 999 --model models/${model_name}-${quantization}.gguf -c 512 -b 512 -ub 512
|
||||
./build/bin/perplexity --file wikitext-2-raw/wiki.test.raw -ngl 999 --model finetuned-model.gguf
|
||||
```
|
||||
|
||||
The perplexity value of the finetuned model should be lower after training on the test set for 2 epochs.
|
Loading…
Add table
Add a link
Reference in a new issue