ggml: aarch64: Implement SVE F32 kernels for vector functions (#13843)
* F32-Mamba-SVE * F32-Mamba-SVE * Resolve test errors-1 * Resolve test errors-2 * F32-vec-SVE * F32-vec-SVE * F32-vec-SVE
This commit is contained in:
parent
53ae30640e
commit
1b8fb8152d
4 changed files with 522 additions and 147 deletions
|
@ -17,29 +17,98 @@ void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * G
|
|||
|
||||
#if defined(GGML_SIMD)
|
||||
float sumf = 0.0f;
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
#if defined(__ARM_FEATURE_SVE)
|
||||
const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
|
||||
const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
|
||||
const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers
|
||||
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
const int np = (n & ~(ggml_f32_step - 1));
|
||||
svfloat32_t sum1 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum2 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum3 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum4 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum5 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum6 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum7 = svdup_n_f32(0.0f);
|
||||
svfloat32_t sum8 = svdup_n_f32(0.0f);
|
||||
svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
|
||||
svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
|
||||
for (int i = 0; i < np; i += ggml_f32_step) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
|
||||
ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
|
||||
sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
|
||||
ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
|
||||
sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3);
|
||||
|
||||
ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
|
||||
ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
|
||||
sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4);
|
||||
|
||||
ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
|
||||
ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
|
||||
sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5);
|
||||
|
||||
ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
|
||||
ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
|
||||
sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6);
|
||||
|
||||
ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
|
||||
ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
|
||||
sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7);
|
||||
|
||||
ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
|
||||
ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
|
||||
sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8);
|
||||
}
|
||||
}
|
||||
// leftovers
|
||||
// Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
|
||||
const int np2 = (n & ~(ggml_f32_epr - 1));
|
||||
for (int i = np; i < np2; i += ggml_f32_epr) {
|
||||
ax1 = GGML_F32_VEC_LOAD(x + i);
|
||||
ay1 = GGML_F32_VEC_LOAD(y + i);
|
||||
sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1);
|
||||
}
|
||||
// maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
|
||||
if (np2 < n) {
|
||||
svbool_t pg = svwhilelt_b32(np2, n);
|
||||
ax1 = svld1_f32(pg, x + np2);
|
||||
ay1 = svld1_f32(pg, y + np2);
|
||||
sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
|
||||
}
|
||||
// reduce sum1,sum2 to sum1
|
||||
GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
|
||||
#else
|
||||
const int np = (n & ~(GGML_F32_STEP - 1));
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
GGML_F32_VEC ax[GGML_F32_ARR];
|
||||
GGML_F32_VEC ay[GGML_F32_ARR];
|
||||
|
||||
for (int i = 0; i < np; i += GGML_F32_STEP) {
|
||||
for (int j = 0; j < GGML_F32_ARR; j++) {
|
||||
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
|
||||
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
|
||||
|
||||
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
|
||||
}
|
||||
}
|
||||
|
||||
// reduce sum0..sum3 to sum0
|
||||
GGML_F32_VEC_REDUCE(sumf, sum);
|
||||
|
||||
// leftovers
|
||||
for (int i = np; i < n; ++i) {
|
||||
sumf += x[i]*y[i];
|
||||
}
|
||||
#endif
|
||||
#else
|
||||
// scalar
|
||||
ggml_float sumf = 0.0;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue