llama : move end-user examples to tools directory (#13249)

* llama : move end-user examples to tools directory

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
Diego Devesa 2025-05-02 20:27:13 +02:00 committed by GitHub
parent b34443923c
commit 1d36b3670b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
213 changed files with 226 additions and 190 deletions

View file

@ -37,19 +37,19 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
2. Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
pip install -r tools/llava/requirements.txt
```
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
```sh
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
python ./tools/llava/llava_surgery.py -m ../llava-v1.5-7b
```
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
python ./tools/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
@ -69,12 +69,12 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
2) Install the required Python packages:
```sh
pip install -r examples/llava/requirements.txt
pip install -r tools/llava/requirements.txt
```
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
```console
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
python tools/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
```
- you will find a llava.projector and a llava.clip file in your model directory
@ -88,7 +88,7 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso
5) Create the visual gguf model:
```console
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
python ./tools/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
```
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP