llama : move end-user examples to tools directory (#13249)
* llama : move end-user examples to tools directory --------- Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
parent
b34443923c
commit
1d36b3670b
213 changed files with 226 additions and 190 deletions
|
@ -37,19 +37,19 @@ git clone https://huggingface.co/openai/clip-vit-large-patch14-336
|
|||
2. Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
pip install -r tools/llava/requirements.txt
|
||||
```
|
||||
|
||||
3. Use `llava_surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/llava_surgery.py -m ../llava-v1.5-7b
|
||||
python ./tools/llava/llava_surgery.py -m ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
4. Use `convert_image_encoder_to_gguf.py` to convert the LLaVA image encoder to GGUF:
|
||||
|
||||
```sh
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
python ./tools/llava/convert_image_encoder_to_gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
|
||||
```
|
||||
|
||||
5. Use `examples/convert_legacy_llama.py` to convert the LLaMA part of LLaVA to GGUF:
|
||||
|
@ -69,12 +69,12 @@ git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
|||
2) Install the required Python packages:
|
||||
|
||||
```sh
|
||||
pip install -r examples/llava/requirements.txt
|
||||
pip install -r tools/llava/requirements.txt
|
||||
```
|
||||
|
||||
3) Use `llava_surgery_v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
```console
|
||||
python examples/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
python tools/llava/llava_surgery_v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
```
|
||||
- you will find a llava.projector and a llava.clip file in your model directory
|
||||
|
||||
|
@ -88,7 +88,7 @@ curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.jso
|
|||
|
||||
5) Create the visual gguf model:
|
||||
```console
|
||||
python ./examples/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
python ./tools/llava/convert_image_encoder_to_gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
```
|
||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue