llama : move end-user examples to tools directory (#13249)

* llama : move end-user examples to tools directory

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
This commit is contained in:
Diego Devesa 2025-05-02 20:27:13 +02:00 committed by GitHub
parent b34443923c
commit 1d36b3670b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
213 changed files with 226 additions and 190 deletions

View file

@ -0,0 +1,5 @@
set(TARGET llama-cli)
add_executable(${TARGET} main.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

388
tools/main/README.md Normal file
View file

@ -0,0 +1,388 @@
# llama.cpp/tools/main
This example program allows you to use various LLaMA language models easily and efficiently. It is specifically designed to work with the [llama.cpp](https://github.com/ggml-org/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts.
## Table of Contents
1. [Quick Start](#quick-start)
2. [Common Options](#common-options)
3. [Input Prompts](#input-prompts)
4. [Interaction](#interaction)
5. [Context Management](#context-management)
6. [Generation Flags](#generation-flags)
7. [Performance Tuning and Memory Options](#performance-tuning-and-memory-options)
8. [Additional Options](#additional-options)
## Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
First, we will need to download a model. In these examples, we will use the Gemma model from the ggml-org repo on Hugging Face.
[https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true)
Once downloaded, place your model in the models folder in llama.cpp.
### Unix-based systems (Linux, macOS, etc.):
##### Input prompt (One-and-done)
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf -no-cnv --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --chat-template gemma
```
##### Conversation mode using built-in jinja chat template
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --jinja
```
##### One-and-done query using jinja with custom system prompt and a starting prompt
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --jinja --single-turn -sys "You are a helpful assistant" -p "Hello"
```
##### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
```bash
./llama-cli -m models/gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1
```
### Windows:
##### Input prompt (One-and-done)
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf -no-cnv --prompt "Once upon a time"
```
##### Conversation mode (Allow for continuous interaction with the model)
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --chat-template gemma
```
##### Conversation mode using built-in jinja chat template
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --jinja
```
##### One-and-done query using jinja with custom system prompt and a starting prompt
```powershell
./llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --jinja --single-turn -sys "You are a helpful assistant" -p "Hello"
```
#### Infinite text from a starting prompt (you can use `Ctrl-C` to stop it):
```powershell
llama-cli.exe -m models\gemma-1.1-7b-it.Q4_K_M.gguf --ignore-eos -n -1
```
## Common Options
In this section, we cover the most commonly used options for running the `llama-cli` program with the LLaMA models:
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/gemma-1.1-7b-it.Q4_K_M.gguf`; inferred from `--model-url` if set).
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file (e.g [https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true](https://huggingface.co/ggml-org/gemma-1.1-7b-it-Q4_K_M-GGUF/resolve/main/gemma-1.1-7b-it.Q4_K_M.gguf?download=true)).
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 4096, but if a LLaMA model was built with a longer context, increasing this value will provide better results for longer input/inference.
- `-mli, --multiline-input`: Allows you to write or paste multiple lines without ending each in '\'
- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has.
- `-ngl N, --n-gpu-layers N`: When compiled with GPU support, this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
## Input Prompts
The `llama-cli` program provides several ways to interact with the LLaMA models using input prompts:
- `--prompt PROMPT`: Provide a prompt directly as a command-line option.
- `--file FNAME`: Provide a file containing a prompt or multiple prompts.
- `--system-prompt PROMPT`: Provide a system prompt (will otherwise use the default one in the chat template (if provided)).
- `--system-prompt-file FNAME`: Provide a file containing a system prompt.
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
## Interaction
The `llama-cli` program offers a seamless way to interact with LLaMA models, allowing users to engage in real-time conversations or provide instructions for specific tasks. The interactive mode can be triggered using various options, including `--interactive` and `--interactive-first`.
In interactive mode, users can participate in text generation by injecting their input during the process. Users can press `Ctrl+C` at any time to interject and type their input, followed by pressing `Return` to submit it to the LLaMA model. To submit additional lines without finalizing input, users can end the current line with a backslash (`\`) and continue typing.
### Interaction Options
- `-i, --interactive`: Run the program in interactive mode, allowing users to engage in real-time conversations or provide specific instructions to the model.
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
- `-cnv, --conversation`: Run the program in conversation mode (does not print special tokens and suffix/prefix, use default or provided chat template) (default: true if chat template found)
- `-no-cnv`: Disable conversation mode (default: false)
- `-st, --single-turn`: Only process a single conversation turn (user input) and then exit.
- `--jinja`: Enable jinja chat template parser, will use the model's built-in template or a user-provided one (default: false)
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
By understanding and utilizing these interaction options, you can create engaging and dynamic experiences with the LLaMA models, tailoring the text generation process to your specific needs.
### Reverse Prompts
Reverse prompts are a powerful way to create a chat-like experience with a LLaMA model by pausing the text generation when specific text strings are encountered:
- `-r PROMPT, --reverse-prompt PROMPT`: Specify one or multiple reverse prompts to pause text generation and switch to interactive mode. For example, `-r "User:"` can be used to jump back into the conversation whenever it's the user's turn to speak. This helps create a more interactive and conversational experience. However, the reverse prompt doesn't work when it ends with a space.
To overcome this limitation, you can use the `--in-prefix` flag to add a space or any other characters after the reverse prompt.
### In-Prefix
The `--in-prefix` flag is used to add a prefix to your input, primarily, this is used to insert a space after the reverse prompt. Here's an example of how to use the `--in-prefix` flag in conjunction with the `--reverse-prompt` flag:
```sh
./llama-cli -r "User:" --in-prefix " "
```
### In-Suffix
The `--in-suffix` flag is used to add a suffix after your input. This is useful for adding an "Assistant:" prompt after the user's input. It's added after the new-line character (`\n`) that's automatically added to the end of the user's input. Here's an example of how to use the `--in-suffix` flag in conjunction with the `--reverse-prompt` flag:
```sh
./llama-cli -r "User:" --in-prefix " " --in-suffix "Assistant:"
```
When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled
### Chat templates
`--chat-template JINJA_TEMPLATE`: This option sets a custom jinja chat template. It accepts a string, not a file name. Default: template taken from model's metadata. Llama.cpp only supports [some pre-defined templates](https://github.com/ggml-org/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template). These include llama2, llama3, gemma, monarch, chatml, orion, vicuna, vicuna-orca, deepseek, command-r, zephyr. When --in-prefix or --in-suffix options are enabled the chat template ( --chat-template ) is disabled.
Example usage: `--chat-template gemma`
`--chat-template-file FNAME`: Load a custom jinja chat template from an external file, useful if the model contains outdated or incompatible template, some examples can be found in models/templates. Up-to-date chat templates can be downloaded from Hugging Face using scripts/get_chat_template.py
## Context Management
During text generation, LLaMA models have a limited context size, which means they can only consider a certain number of tokens from the input and generated text. When the context fills up, the model resets internally, potentially losing some information from the beginning of the conversation or instructions. Context management options help maintain continuity and coherence in these situations.
### Context Size
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 4096, 0 = loaded from model). If a LLaMA model was built with a longer context, increasing this value will yield the best results on longer input/inference.
### Extended Context Size
Some fine-tuned models have extended the context length by scaling RoPE. For example, if the original pre-trained model has a context length (max sequence length) of 4096 (4k) and the fine-tuned model has 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8.
- `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model.
### Keep Prompt
The `--keep` option allows users to retain the original prompt when the model runs out of context, ensuring a connection to the initial instruction or conversation topic is maintained.
- `--keep N`: Specify the number of tokens from the initial prompt to retain when the model resets its internal context. By default, this value is set to 0 (meaning no tokens are kept). Use `-1` to retain all tokens from the initial prompt.
By utilizing context management options like `--ctx-size` and `--keep`, you can maintain a more coherent and consistent interaction with the LLaMA models, ensuring that the generated text remains relevant to the original prompt or conversation.
## Generation Flags
The following options allow you to control the text generation process and fine-tune the diversity, creativity, and quality of the generated text according to your needs. By adjusting these options and experimenting with different combinations of values, you can find the best settings for your specific use case.
### Number of Tokens to Predict
- `-n N, --predict N`: Set the number of tokens to predict when generating text (default: -1, -1 = infinity, -2 = until context filled)
The `--predict` option controls the number of tokens the model generates in response to the input prompt. By adjusting this value, you can influence the length of the generated text. A higher value will result in longer text, while a lower value will produce shorter text.
A value of -1 will enable infinite text generation, even though we have a finite context window. When the context window is full, some of the earlier tokens (half of the tokens after `--keep`) will be discarded. The context must then be re-evaluated before generation can resume. On large models and/or large context windows, this will result in a significant pause in output.
If the pause is undesirable, a value of -2 will stop generation immediately when the context is filled.
The `--no-context-shift` option allows you to stop the infinite text generation once the finite context window is full.
It is important to note that the generated text may be shorter than the specified number of tokens if an End-of-Sequence (EOS) token or a reverse prompt is encountered. In interactive mode, text generation will pause and control will be returned to the user. In non-interactive mode, the program will end. In both cases, the text generation may stop before reaching the specified `--predict` value. If you want the model to keep going without ever producing End-of-Sequence on its own, you can use the `--ignore-eos` parameter.
### Temperature
- `--temp N`: Adjust the randomness of the generated text (default: 0.8).
Temperature is a hyperparameter that controls the randomness of the generated text. It affects the probability distribution of the model's output tokens. A higher temperature (e.g., 1.5) makes the output more random and creative, while a lower temperature (e.g., 0.5) makes the output more focused, deterministic, and conservative. The default value is 0.8, which provides a balance between randomness and determinism. At the extreme, a temperature of 0 will always pick the most likely next token, leading to identical outputs in each run.
Example usage: `--temp 0`
### Repeat Penalty
- `--repeat-penalty N`: Control the repetition of token sequences in the generated text default: 1.0, 1.0 = disabled).
- `--repeat-last-n N`: Last n tokens to consider for penalizing repetition (default: 64, 0 = disabled, -1 = ctx-size).
The `repeat-penalty` option helps prevent the model from generating repetitive or monotonous text. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. The default value is 1.
The `repeat-last-n` option controls the number of tokens in the history to consider for penalizing repetition. A larger value will look further back in the generated text to prevent repetitions, while a smaller value will only consider recent tokens. A value of 0 disables the penalty, and a value of -1 sets the number of tokens considered equal to the context size (`ctx-size`).
### DRY Repetition Penalty
DRY (Don't Repeat Yourself) sampling is an effective technique for reducing repetition in generated text even across long contexts by penalizing tokens based on their recent usage patterns (original [PR link](https://github.com/oobabooga/text-generation-webui/pull/5677)).
- `--dry-multiplier N`: Set the DRY sampling multiplier (default: 0.0, 0.0 = disabled).
- `--dry-base N`: Set the DRY sampling base value (default: 1.75).
- `--dry-allowed-length N`: Set the allowed length for DRY sampling (default: 2).
- `--dry-penalty-last-n N`: Set DRY penalty for the last n tokens (default: -1, 0 = disable, -1 = context size).
- `--dry-sequence-breaker STRING`: Add a sequence breaker for DRY sampling. Can be used more than once to add multiple sequence breakers. Using this clears out the default breakers, which consist of: `['\n', ':', '"', '*']`. If the string `"none"` is supplied, no sequence breakers are used.
The `dry-multiplier` option controls the strength of the DRY sampling effect. A value of 0.0 disables DRY sampling, while higher values increase its influence. A typical recommended value is 0.8.
The `dry-base` option sets the base value for the exponential penalty calculation in DRY sampling. Higher values lead to more aggressive penalization of repetitions.
The `dry-allowed-length` option sets the maximum length of repeated sequences that will not be penalized. Repetitions shorter than or equal to this length are not penalized, allowing for natural repetitions of short phrases or common words.
The `dry-penalty-last-n` option controls how many recent tokens to consider when applying the DRY penalty. A value of -1 considers the entire context. Use a positive value to limit the consideration to a specific number of recent tokens.
The `dry-sequence-breaker` option adds a single sequence breaker and can be used more than once to specify multiple sequence breakers. Sequence breakers interrupt sequence matching and break the input into parts where matching can be applied.
DRY sampling provides more nuanced control over text generation, particularly for reducing long-range repetitions and maintaining global coherence.
Example usage: `--dry-multiplier 0.8 --dry-base 1.75 --dry-allowed-length 2 --dry-penalty-last-n -1 --dry-sequence-breaker "—" --dry-sequence-breaker "##"`
### Top-K Sampling
- `--top-k N`: Limit the next token selection to the K most probable tokens (default: 40).
Top-k sampling is a text generation method that selects the next token only from the top k most likely tokens predicted by the model. It helps reduce the risk of generating low-probability or nonsensical tokens, but it may also limit the diversity of the output. A higher value for top-k (e.g., 100) will consider more tokens and lead to more diverse text, while a lower value (e.g., 10) will focus on the most probable tokens and generate more conservative text. The default value is 40.
Example usage: `--top-k 30`
### Top-P Sampling
- `--top-p N`: Limit the next token selection to a subset of tokens with a cumulative probability above a threshold P (default: 0.9).
Top-p sampling, also known as nucleus sampling, is another text generation method that selects the next token from a subset of tokens that together have a cumulative probability of at least p. This method provides a balance between diversity and quality by considering both the probabilities of tokens and the number of tokens to sample from. A higher value for top-p (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. The default value is 0.9.
Example usage: `--top-p 0.95`
### Min-P Sampling
- `--min-p N`: Sets a minimum base probability threshold for token selection (default: 0.1).
The Min-P sampling method was designed as an alternative to Top-P, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out.
Example usage: `--min-p 0.05`
### Locally Typical Sampling
- `--typical N`: Enable locally typical sampling with parameter p (default: 1.0, 1.0 = disabled).
Locally typical sampling promotes the generation of contextually coherent and diverse text by sampling tokens that are typical or expected based on the surrounding context. By setting the parameter p between 0 and 1, you can control the balance between producing text that is locally coherent and diverse. A value closer to 1 will promote more contextually coherent tokens, while a value closer to 0 will promote more diverse tokens. A value equal to 1 disables locally typical sampling.
Example usage: `--typical 0.9`
### Mirostat Sampling
- `--mirostat N`: Enable Mirostat sampling, controlling perplexity during text generation (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0).
- `--mirostat-lr N`: Set the Mirostat learning rate, parameter eta (default: 0.1).
- `--mirostat-ent N`: Set the Mirostat target entropy, parameter tau (default: 5.0).
Mirostat is an algorithm that actively maintains the quality of generated text within a desired range during text generation. It aims to strike a balance between coherence and diversity, avoiding low-quality output caused by excessive repetition (boredom traps) or incoherence (confusion traps).
The `--mirostat-lr` option sets the Mirostat learning rate (eta). The learning rate influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. The default value is `0.1`.
The `--mirostat-ent` option sets the Mirostat target entropy (tau), which represents the desired perplexity value for the generated text. Adjusting the target entropy allows you to control the balance between coherence and diversity in the generated text. A lower value will result in more focused and coherent text, while a higher value will lead to more diverse and potentially less coherent text. The default value is `5.0`.
Example usage: `--mirostat 2 --mirostat-lr 0.05 --mirostat-ent 3.0`
### XTC Sampling
- `--xtc-probability N`: Sets the chance for token removal (checked once on sampler start) (default: 0.0).
- `--xtc-threshold N`: Sets a minimum probability threshold for tokens to be removed (default: 0.1).
Exclude Top Choices (XTC) is a unique sampler that is designed to remove top tokens from consideration and avoid more obvious and repetitive outputs. With a chance of `xtc-probability` it searches for tokens with probabilities of `xtc-threshold` and above, then removes all such tokens except the least probable one.
By removing top tokens XTC can improve the variety of answers, break writing clichés and inhibit repition, since clichés and repeated phrases are usually more likely to appear. By keeping the last token above the threshold, XTC ensures that the answer is still coherent. XTC is meant to be used for creative tasks, but feel free to experiment with different settings for different models.
Being experimental and unique, XTC is disabled by default. The recommended combination of samplers is Min-P followed by XTC on its default settings: `--sampling-seq mx --min-p 0.02 --xtc-probability 0.5`.
Example usage: `--xtc-probability 0.5 --xtc-threshold 0.1`
### Top-nσ Sampling
- `--top-nsigma N`: Limit the next token selection to a subset of tokens with pre-softmax logits that are within n * σ less than the max logit (default: -1, -1 = disabled).
Top-nσ sampling is a text generation method that selects tokens based on a statistical threshold in pre-softmax logits. It works by only sampling from tokens with logits that are within n * σ of the maximum logit. This method helps maintain a stable sampling space regardless of temperature scaling, allowing it to perform well on reasoning tasks even in high temperatures. Without complex probability manipulation, it efficiently filters tokens directly on the pre-softmax logits. A higher value for top-nsigma (e.g., 5) will take more noisy tokens into consideration, while a lower value (e.g., 1) will focous on the more informative region of the sampling space.
Example usage: `--top-nsigma 1`
### Logit Bias
- `-l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS`: Modify the likelihood of a token appearing in the generated text completion.
The logit bias option allows you to manually adjust the likelihood of specific tokens appearing in the generated text. By providing a token ID and a positive or negative bias value, you can increase or decrease the probability of that token being generated.
For example, use `--logit-bias 15043+1` to increase the likelihood of the token 'Hello', or `--logit-bias 15043-1` to decrease its likelihood. Using a value of negative infinity, `--logit-bias 15043-inf` ensures that the token `Hello` is never produced.
A more practical use case might be to prevent the generation of `\code{begin}` and `\code{end}` by setting the `\` token (29905) to negative infinity with `-l 29905-inf`. (This is due to the prevalence of LaTeX codes that show up in LLaMA model inference.)
Example usage: `--logit-bias 29905-inf`
### RNG Seed
- `-s SEED, --seed SEED`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
The RNG seed is used to initialize the random number generator that influences the text generation process. By setting a specific seed value, you can obtain consistent and reproducible results across multiple runs with the same input and settings. This can be helpful for testing, debugging, or comparing the effects of different options on the generated text to see when they diverge. If the seed is set to a value less than 0, a random seed will be used, which will result in different outputs on each run.
## Performance Tuning and Memory Options
These options help improve the performance and memory usage of the LLaMA models. By adjusting these settings, you can fine-tune the model's behavior to better suit your system's capabilities and achieve optimal performance for your specific use case.
### Number of Threads
- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance.
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. In some systems, it is beneficial to use a higher number of threads during batch processing than during generation. If not specified, the number of threads used for batch processing will be the same as the number of threads used for generation.
### Mlock
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped. This can improve performance but trades away some of the advantages of memory-mapping by requiring more RAM to run and potentially slowing down load times as the model loads into RAM.
### No Memory Mapping
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed. However, if the model is larger than your total amount of RAM or if your system is low on available memory, using mmap might increase the risk of pageouts, negatively impacting performance. Disabling mmap results in slower load times but may reduce pageouts if you're not using `--mlock`. Note that if the model is larger than the total amount of RAM, turning off mmap would prevent the model from loading at all.
### NUMA support
- `--numa distribute`: Pin an equal proportion of the threads to the cores on each NUMA node. This will spread the load amongst all cores on the system, utilitizing all memory channels at the expense of potentially requiring memory to travel over the slow links between nodes.
- `--numa isolate`: Pin all threads to the NUMA node that the program starts on. This limits the number of cores and amount of memory that can be used, but guarantees all memory access remains local to the NUMA node.
- `--numa numactl`: Pin threads to the CPUMAP that is passed to the program by starting it with the numactl utility. This is the most flexible mode, and allow arbitrary core usage patterns, for example a map that uses all the cores on one NUMA nodes, and just enough cores on a second node to saturate the inter-node memory bus.
These flags attempt optimizations that help on some systems with non-uniform memory access. This currently consists of one of the above strategies, and disabling prefetch and readahead for mmap. The latter causes mapped pages to be faulted in on first access instead of all at once, and in combination with pinning threads to NUMA nodes, more of the pages end up on the NUMA node where they are used. Note that if the model is already in the system page cache, for example because of a previous run without this option, this will have little effect unless you drop the page cache first. This can be done by rebooting the system or on Linux by writing '3' to '/proc/sys/vm/drop_caches' as root.
### Batch Size
- `-ub N`, `--ubatch-size N`: Physical batch size. This is the maximum number of tokens that may be processed at a time. Increasing this value may improve performance during prompt processing, at the expense of higher memory usage. Default: `512`.
- `-b N`, `--batch-size N`: Logical batch size. Increasing this value above the value of the physical batch size may improve prompt processing performance when using multiple GPUs with pipeline parallelism. Default: `2048`.
### Prompt Caching
- `--prompt-cache FNAME`: Specify a file to cache the model state after the initial prompt. This can significantly speed up the startup time when you're using longer prompts. The file is created during the first run and is reused and updated in subsequent runs. **Note**: Restoring a cached prompt does not imply restoring the exact state of the session at the point it was saved. So even when specifying a specific seed, you are not guaranteed to get the same sequence of tokens as the original generation.
### Grammars & JSON schemas
- `--grammar GRAMMAR`, `--grammar-file FILE`: Specify a grammar (defined inline or in a file) to constrain model output to a specific format. For example, you could force the model to output JSON or to speak only in emojis. See the [GBNF guide](../../grammars/README.md) for details on the syntax.
- `--json-schema SCHEMA`: Specify a [JSON schema](https://json-schema.org/) to constrain model output to (e.g. `{}` for any JSON object, or `{"items": {"type": "string", "minLength": 10, "maxLength": 100}, "minItems": 10}` for a JSON array of strings with size constraints). If a schema uses external `$ref`s, you should use `--grammar "$( python examples/json_schema_to_grammar.py myschema.json )"` instead.
### Quantization
For information about 4-bit quantization, which can significantly improve performance and reduce memory usage, please refer to llama.cpp's primary [README](../../README.md#prepare-and-quantize).
## LoRA (Low-Rank Adaptation) adapters
- `--lora FNAME`: Optional path to a LoRA adapter to use with scaling of 1.0. Can be mixed with `--lora-scaled` and can be repeated to use multiple adapters.
- `--lora-scaled FNAME`: Optional path to a LoRA adapter with user-defined scaling. Can be mixed with `--lora` and can repeated to use multiple adapters.
You can add LoRA adapters using `--lora` or `--lora-scaled`. For example: `--lora my_adapter_1.gguf --lora my_adapter_2.gguf ...` or `--lora-scaled lora_task_A.gguf 0.5 --lora-scaled lora_task_B.gguf 0.5`.
LoRA adapters should be in GGUF format. To convert from Hugging Face format use the `convert-lora-to-gguf.py` script. LoRA adapters are loaded separately and applied during inference - they are not merged with the main model. This means that mmap model loading is fully supported when using LoRA adapters. The old `--lora-base` flag has been removed now that merging is no longer performed.
## Additional Options
These options provide extra functionality and customization when running the LLaMA models:
- `-h, --help`: Display a help message showing all available options and their default values. This is particularly useful for checking the latest options and default values, as they can change frequently, and the information in this document may become outdated.
- `--verbose-prompt`: Print the prompt before generating text.
- `--no-display-prompt`: Don't print prompt at generation.
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used.
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache.

980
tools/main/main.cpp Normal file
View file

@ -0,0 +1,980 @@
#include "arg.h"
#include "common.h"
#include "console.h"
#include "log.h"
#include "sampling.h"
#include "llama.h"
#include "chat.h"
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
static llama_context ** g_ctx;
static llama_model ** g_model;
static common_sampler ** g_smpl;
static common_params * g_params;
static std::vector<llama_token> * g_input_tokens;
static std::ostringstream * g_output_ss;
static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static bool need_insert_eot = false;
static void print_usage(int argc, char ** argv) {
(void) argc;
LOG("\nexample usage:\n");
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128 -no-cnv\n", argv[0]);
LOG("\n chat (conversation): %s -m your_model.gguf -sys \"You are a helpful assistant\"\n", argv[0]);
LOG("\n");
}
static bool file_exists(const std::string & path) {
std::ifstream f(path.c_str());
return f.good();
}
static bool file_is_empty(const std::string & path) {
std::ifstream f;
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
return f.tellg() == 0;
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (!is_interacting && g_params->interactive) {
is_interacting = true;
need_insert_eot = true;
} else {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
// make sure all logs are flushed
LOG("Interrupted by user\n");
common_log_pause(common_log_main());
_exit(130);
}
}
}
#endif
int main(int argc, char ** argv) {
common_params params;
g_params = &params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) {
return 1;
}
common_init();
auto & sparams = params.sampling;
// save choice to use color for later
// (note for later: this is a slightly awkward choice)
console::init(params.simple_io, params.use_color);
atexit([]() { console::cleanup(); });
if (params.logits_all) {
LOG_ERR("************\n");
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.embedding) {
LOG_ERR("************\n");
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
LOG_ERR("************\n\n");
return 0;
}
if (params.n_ctx != 0 && params.n_ctx < 8) {
LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
}
if (params.rope_freq_base != 0.0) {
LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
}
if (params.rope_freq_scale != 0.0) {
LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
}
LOG_INF("%s: llama backend init\n", __func__);
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = nullptr;
llama_context * ctx = nullptr;
common_sampler * smpl = nullptr;
g_model = &model;
g_ctx = &ctx;
g_smpl = &smpl;
std::vector<common_chat_msg> chat_msgs;
// load the model and apply lora adapter, if any
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__);
common_init_result llama_init = common_init_from_params(params);
model = llama_init.model.get();
ctx = llama_init.context.get();
if (model == NULL) {
LOG_ERR("%s: error: unable to load model\n", __func__);
return 1;
}
const llama_vocab * vocab = llama_model_get_vocab(model);
auto chat_templates = common_chat_templates_init(model, params.chat_template);
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads);
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU));
auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_new");
auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, "ggml_threadpool_free");
struct ggml_threadpool_params tpp_batch =
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch);
struct ggml_threadpool_params tpp =
ggml_threadpool_params_from_cpu_params(params.cpuparams);
set_process_priority(params.cpuparams.priority);
struct ggml_threadpool * threadpool_batch = NULL;
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) {
threadpool_batch = ggml_threadpool_new_fn(&tpp_batch);
if (!threadpool_batch) {
LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads);
return 1;
}
// Start the non-batch threadpool in the paused state
tpp.paused = true;
}
struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
if (!threadpool) {
LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
return 1;
}
llama_attach_threadpool(ctx, threadpool, threadpool_batch);
const int n_ctx_train = llama_model_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);
if (n_ctx > n_ctx_train) {
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx);
}
// auto enable conversation mode if chat template is available
const bool has_chat_template = common_chat_templates_was_explicit(chat_templates.get());
if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) {
if (has_chat_template) {
LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n", __func__);
params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
} else {
params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
}
}
// in case user force-activate conversation mode (via -cnv) without proper chat template, we show a warning
if (params.conversation_mode && !has_chat_template) {
LOG_WRN("%s: chat template is not available or is not supported. This may cause the model to output suboptimal responses\n", __func__);
}
// print chat template example in conversation mode
if (params.conversation_mode) {
if (params.enable_chat_template) {
if (!params.prompt.empty() && params.system_prompt.empty()) {
LOG_WRN("*** User-specified prompt will pre-start conversation, did you mean to set --system-prompt (-sys) instead?\n");
}
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(chat_templates.get(), params.use_jinja).c_str());
} else {
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__);
}
}
// print system information
{
LOG_INF("\n");
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
LOG_INF("\n");
}
std::string path_session = params.path_prompt_cache;
std::vector<llama_token> session_tokens;
if (!path_session.empty()) {
LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
if (!file_exists(path_session)) {
LOG_INF("%s: session file does not exist, will create.\n", __func__);
} else if (file_is_empty(path_session)) {
LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__);
} else {
// The file exists and is not empty
session_tokens.resize(n_ctx);
size_t n_token_count_out = 0;
if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str());
return 1;
}
session_tokens.resize(n_token_count_out);
LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
}
}
const bool add_bos = llama_vocab_get_add_bos(vocab) && !params.use_jinja;
if (!llama_model_has_encoder(model)) {
GGML_ASSERT(!llama_vocab_get_add_eos(vocab));
}
LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos);
std::vector<llama_token> embd_inp;
bool waiting_for_first_input = false;
auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) {
common_chat_msg new_msg;
new_msg.role = role;
new_msg.content = content;
auto formatted = common_chat_format_single(chat_templates.get(), chat_msgs, new_msg, role == "user", g_params->use_jinja);
chat_msgs.push_back(new_msg);
LOG_DBG("formatted: '%s'\n", formatted.c_str());
return formatted;
};
std::string prompt;
{
if (params.conversation_mode && params.enable_chat_template) {
if (!params.system_prompt.empty()) {
// format the system prompt (will use template default if empty)
chat_add_and_format("system", params.system_prompt);
}
if (!params.prompt.empty()) {
// format and append the user prompt
chat_add_and_format("user", params.prompt);
} else {
waiting_for_first_input = true;
}
if (!params.system_prompt.empty() || !params.prompt.empty()) {
common_chat_templates_inputs inputs;
inputs.messages = chat_msgs;
inputs.add_generation_prompt = !params.prompt.empty();
prompt = common_chat_templates_apply(chat_templates.get(), inputs).prompt;
}
} else {
// otherwise use the prompt as is
prompt = params.prompt;
}
if (params.interactive_first || !prompt.empty() || session_tokens.empty()) {
LOG_DBG("tokenize the prompt\n");
embd_inp = common_tokenize(ctx, prompt, true, true);
} else {
LOG_DBG("use session tokens\n");
embd_inp = session_tokens;
}
LOG_DBG("prompt: \"%s\"\n", prompt.c_str());
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str());
}
// Should not run without any tokens
if (!waiting_for_first_input && embd_inp.empty()) {
if (add_bos) {
embd_inp.push_back(llama_vocab_bos(vocab));
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str());
} else {
LOG_ERR("input is empty\n");
return -1;
}
}
// Tokenize negative prompt
if ((int) embd_inp.size() > n_ctx - 4) {
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
return 1;
}
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (!session_tokens.empty()) {
for (llama_token id : session_tokens) {
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
break;
}
n_matching_session_tokens++;
}
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
LOG_INF("%s: using full prompt from session file\n", __func__);
} else if (n_matching_session_tokens >= embd_inp.size()) {
LOG_INF("%s: session file has exact match for prompt!\n", __func__);
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
__func__, n_matching_session_tokens, embd_inp.size());
} else {
LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n",
__func__, n_matching_session_tokens, embd_inp.size());
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_self_seq_rm(ctx, -1, n_matching_session_tokens, -1);
}
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size());
// if we will use the cache for the full prompt without reaching the end of the cache, force
// reevaluation of the last token to recalculate the cached logits
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1);
session_tokens.resize(embd_inp.size() - 1);
}
// number of tokens to keep when resetting context
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
params.n_keep = (int)embd_inp.size();
} else {
params.n_keep += add_bos; // always keep the BOS token
}
if (params.conversation_mode) {
if (params.single_turn && !params.prompt.empty()) {
params.interactive = false;
params.interactive_first = false;
} else {
params.interactive_first = true;
}
}
// enable interactive mode if interactive start is specified
if (params.interactive_first) {
params.interactive = true;
}
if (params.verbose_prompt) {
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
for (int i = 0; i < (int) embd_inp.size(); i++) {
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str());
}
if (params.n_keep > add_bos) {
LOG_INF("%s: static prompt based on n_keep: '", __func__);
for (int i = 0; i < params.n_keep; i++) {
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str());
}
LOG_CNT("'\n");
}
LOG_INF("\n");
}
// ctrl+C handling
{
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
}
if (params.interactive) {
LOG_INF("%s: interactive mode on.\n", __func__);
if (!params.antiprompt.empty()) {
for (const auto & antiprompt : params.antiprompt) {
LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, antiprompt, false, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
}
if (params.input_prefix_bos) {
LOG_INF("Input prefix with BOS\n");
}
if (!params.input_prefix.empty()) {
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, params.input_prefix, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
if (!params.input_suffix.empty()) {
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str());
if (params.verbose_prompt) {
auto tmp = common_tokenize(ctx, params.input_suffix, false, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str());
}
}
}
}
smpl = common_sampler_init(model, sparams);
if (!smpl) {
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
return 1;
}
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl));
LOG_INF("sampler params: \n%s\n", sparams.print().c_str());
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str());
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
// group-attention state
// number of grouped KV tokens so far (used only if params.grp_attn_n > 1)
int ga_i = 0;
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT
LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w);
}
LOG_INF("\n");
if (params.interactive) {
const char * control_message;
if (params.multiline_input) {
control_message = " - To return control to the AI, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to the AI.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
LOG_INF("== Running in interactive mode. ==\n");
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
LOG_INF( " - Press Ctrl+C to interject at any time.\n");
#endif
LOG_INF( "%s", control_message);
if (params.conversation_mode && params.enable_chat_template && params.system_prompt.empty()) {
LOG_INF( " - Not using system message. To change it, set a different value via -sys PROMPT\n");
}
LOG_INF("\n");
is_interacting = params.interactive_first;
}
bool is_antiprompt = false;
bool input_echo = true;
bool display = true;
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
int n_past = 0;
int n_remain = params.n_predict;
int n_consumed = 0;
int n_session_consumed = 0;
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
std::ostringstream output_ss; g_output_ss = &output_ss;
std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
// the first thing we will do is to output the prompt, so set color accordingly
console::set_display(console::prompt);
display = params.display_prompt;
std::vector<llama_token> embd;
// single-token antiprompts
std::vector<llama_token> antiprompt_token;
for (const std::string & antiprompt : params.antiprompt) {
auto ids = ::common_tokenize(ctx, antiprompt, false, true);
if (ids.size() == 1) {
antiprompt_token.push_back(ids[0]);
}
}
if (llama_model_has_encoder(model)) {
int enc_input_size = embd_inp.size();
llama_token * enc_input_buf = embd_inp.data();
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
if (decoder_start_token_id == LLAMA_TOKEN_NULL) {
decoder_start_token_id = llama_vocab_bos(vocab);
}
embd_inp.clear();
embd_inp.push_back(decoder_start_token_id);
}
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
// predict
if (!embd.empty()) {
// Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
int max_embd_size = n_ctx - 4;
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
if ((int) embd.size() > max_embd_size) {
const int skipped_tokens = (int) embd.size() - max_embd_size;
embd.resize(max_embd_size);
console::set_display(console::error);
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
console::set_display(console::reset);
}
if (ga_n == 1) {
// infinite text generation via context shifting
// if we run out of context:
// - take the n_keep first tokens from the original prompt (via n_past)
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
if (n_past + (int) embd.size() >= n_ctx) {
if (!params.ctx_shift){
LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__);
break;
}
if (params.n_predict == -2) {
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
break;
}
const int n_left = n_past - params.n_keep;
const int n_discard = n_left/2;
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
n_past -= n_discard;
LOG_DBG("after swap: n_past = %d\n", n_past);
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str());
LOG_DBG("clear session path\n");
path_session.clear();
}
} else {
// context extension via Self-Extend
while (n_past >= ga_i + ga_w) {
const int ib = (ga_n*ga_i)/ga_w;
const int bd = (ga_w/ga_n)*(ga_n - 1);
const int dd = (ga_w/ga_n) - ib*bd - ga_w;
LOG_DBG("\n");
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd);
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
llama_kv_self_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_self_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_self_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
n_past -= bd;
ga_i += ga_w/ga_n;
LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i);
}
}
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
if (n_session_consumed < (int) session_tokens.size()) {
size_t i = 0;
for ( ; i < embd.size(); i++) {
if (embd[i] != session_tokens[n_session_consumed]) {
session_tokens.resize(n_session_consumed);
break;
}
n_past++;
n_session_consumed++;
if (n_session_consumed >= (int) session_tokens.size()) {
++i;
break;
}
}
if (i > 0) {
embd.erase(embd.begin(), embd.begin() + i);
}
}
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
int n_eval = (int) embd.size() - i;
if (n_eval > params.n_batch) {
n_eval = params.n_batch;
}
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str());
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) {
LOG_ERR("%s : failed to eval\n", __func__);
return 1;
}
n_past += n_eval;
LOG_DBG("n_past = %d\n", n_past);
// Display total tokens alongside total time
if (params.n_print > 0 && n_past % params.n_print == 0) {
LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
}
}
if (!embd.empty() && !path_session.empty()) {
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
}
embd.clear();
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
// optionally save the session on first sample (for faster prompt loading next time)
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
need_to_save_session = false;
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
LOG_DBG("saved session to %s\n", path_session.c_str());
}
const llama_token id = common_sampler_sample(smpl, ctx, -1);
common_sampler_accept(smpl, id, /* accept_grammar= */ true);
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str());
embd.push_back(id);
// echo this to console
input_echo = true;
// decrement remaining sampling budget
--n_remain;
LOG_DBG("n_remain: %d\n", n_remain);
} else {
// some user input remains from prompt or interaction, forward it to processing
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
while ((int) embd_inp.size() > n_consumed) {
embd.push_back(embd_inp[n_consumed]);
// push the prompt in the sampling context in order to apply repetition penalties later
// for the prompt, we don't apply grammar rules
common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false);
++n_consumed;
if ((int) embd.size() >= params.n_batch) {
break;
}
}
}
// display text
if (input_echo && display) {
for (auto id : embd) {
const std::string token_str = common_token_to_piece(ctx, id, params.special);
// Console/Stream Output
LOG("%s", token_str.c_str());
// Record Displayed Tokens To Log
// Note: Generated tokens are created one by one hence this check
if (embd.size() > 1) {
// Incoming Requested Tokens
input_tokens.push_back(id);
} else {
// Outgoing Generated Tokens
output_tokens.push_back(id);
output_ss << token_str;
}
}
}
// reset color to default if there is no pending user input
if (input_echo && (int) embd_inp.size() == n_consumed) {
console::set_display(console::reset);
display = true;
}
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// check for reverse prompt in the last n_prev tokens
if (!params.antiprompt.empty()) {
const int n_prev = 32;
const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev);
is_antiprompt = false;
// Check if each of the reverse prompts appears at the end of the output.
// If we're not running interactively, the reverse prompt might be tokenized with some following characters
// so we'll compensate for that by widening the search window a bit.
for (std::string & antiprompt : params.antiprompt) {
size_t extra_padding = params.interactive ? 0 : 2;
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
: 0;
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
}
// check for reverse prompt using special tokens
llama_token last_token = common_sampler_last(smpl);
for (auto token : antiprompt_token) {
if (token == last_token) {
if (params.interactive) {
is_interacting = true;
}
is_antiprompt = true;
break;
}
}
if (is_antiprompt) {
LOG_DBG("found antiprompt: %s\n", last_output.c_str());
}
}
// deal with end of generation tokens in interactive mode
if (!waiting_for_first_input && llama_vocab_is_eog(vocab, common_sampler_last(smpl))) {
LOG_DBG("found an EOG token\n");
if (params.interactive) {
if (!params.antiprompt.empty()) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
is_antiprompt = true;
}
if (params.enable_chat_template) {
chat_add_and_format("assistant", assistant_ss.str());
}
is_interacting = true;
LOG("\n");
}
}
// if current token is not EOG, we add it to current assistant message
if (params.conversation_mode && !waiting_for_first_input) {
const auto id = common_sampler_last(smpl);
assistant_ss << common_token_to_piece(ctx, id, false);
if (!prompt.empty()) {
prompt.clear();
is_interacting = false;
}
}
if ((n_past > 0 || waiting_for_first_input) && is_interacting) {
LOG_DBG("waiting for user input\n");
if (params.conversation_mode) {
LOG("\n> ");
}
if (params.input_prefix_bos) {
LOG_DBG("adding input prefix BOS token\n");
embd_inp.push_back(llama_vocab_bos(vocab));
}
std::string buffer;
if (!params.input_prefix.empty() && !params.conversation_mode) {
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str());
LOG("%s", params.input_prefix.c_str());
}
// color user input only
console::set_display(console::user_input);
display = params.display_prompt;
std::string line;
bool another_line = true;
do {
another_line = console::readline(line, params.multiline_input);
buffer += line;
} while (another_line);
// done taking input, reset color
console::set_display(console::reset);
display = true;
if (buffer.empty()) { // Ctrl+D on empty line exits
LOG("EOF by user\n");
break;
}
if (buffer.back() == '\n') {
// Implement #587:
// If the user wants the text to end in a newline,
// this should be accomplished by explicitly adding a newline by using \ followed by return,
// then returning control by pressing return again.
buffer.pop_back();
}
if (buffer.empty()) { // Enter key on empty line lets the user pass control back
LOG_DBG("empty line, passing control back\n");
} else { // Add tokens to embd only if the input buffer is non-empty
// append input suffix if any
if (!params.input_suffix.empty() && !params.conversation_mode) {
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str());
LOG("%s", params.input_suffix.c_str());
}
LOG_DBG("buffer: '%s'\n", buffer.c_str());
const size_t original_size = embd_inp.size();
if (params.escape) {
string_process_escapes(buffer);
}
bool format_chat = params.conversation_mode && params.enable_chat_template;
std::string user_inp = format_chat
? chat_add_and_format("user", std::move(buffer))
: std::move(buffer);
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true);
const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat);
const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true);
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str());
// if user stop generation mid-way, we must add EOT to finish model's last response
if (need_insert_eot && format_chat) {
llama_token eot = llama_vocab_eot(vocab);
embd_inp.push_back(eot == LLAMA_TOKEN_NULL ? llama_vocab_eos(vocab) : eot);
need_insert_eot = false;
}
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
for (size_t i = original_size; i < embd_inp.size(); ++i) {
const llama_token token = embd_inp[i];
output_tokens.push_back(token);
output_ss << common_token_to_piece(ctx, token);
}
// reset assistant message
assistant_ss.str("");
n_remain -= line_inp.size();
LOG_DBG("n_remain: %d\n", n_remain);
}
input_echo = false; // do not echo this again
}
if (n_past > 0 || waiting_for_first_input) {
if (is_interacting) {
common_sampler_reset(smpl);
}
is_interacting = false;
if (waiting_for_first_input && params.single_turn) {
params.interactive = false;
params.interactive_first = false;
}
waiting_for_first_input = false;
}
}
// end of generation
if (!embd.empty() && llama_vocab_is_eog(vocab, embd.back()) && !(params.interactive)) {
LOG(" [end of text]\n");
break;
}
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
n_remain = params.n_predict;
is_interacting = true;
}
}
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
}
LOG("\n\n");
common_perf_print(ctx, smpl);
common_sampler_free(smpl);
llama_backend_free();
ggml_threadpool_free_fn(threadpool);
ggml_threadpool_free_fn(threadpool_batch);
return 0;
}