clip : refactor graph builder (#13321)

* mtmd : refactor graph builder

* fix qwen2vl

* clean up siglip cgraph

* pixtral migrated

* move minicpmv to a dedicated build function

* move max_feature_layer to build_llava

* use build_attn for minicpm resampler

* fix windows build

* add comment for batch_size

* also support tinygemma3 test model

* qwen2vl does not use RMS norm

* fix qwen2vl norm (2)
This commit is contained in:
Xuan-Son Nguyen 2025-05-06 22:40:24 +02:00 committed by GitHub
parent ffc727203a
commit 32916a4907
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 1354 additions and 1309 deletions

View file

@ -3915,6 +3915,16 @@ class Gemma3VisionModel(VisionModel):
# default values below are taken from HF tranformers code
self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
self.gguf_writer.add_vision_use_gelu(True)
# calculate proj_scale_factor (used by tinygemma3 test model)
image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
n_per_side = int(image_seq_length ** 0.5)
image_size = self.hparams["image_size"]
patch_size = self.hparams["patch_size"]
proj_scale_factor = (image_size // patch_size) // n_per_side
if proj_scale_factor > 0 and proj_scale_factor != 4:
# we only need to write this if it's not the default value
# in this case, we are converting a test model
self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
def tensor_force_quant(self, name, new_name, bid, n_dims):
del bid, new_name, n_dims # unused
@ -3928,6 +3938,9 @@ class Gemma3VisionModel(VisionModel):
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if "vision_model.head." in name:
return [] # skip redundant tensors for tinygemma3
if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
# process vision tensors

File diff suppressed because it is too large Load diff