mtmd : add support for Qwen2-Audio and SeaLLM-Audio (#13760)
* mtmd : add Qwen2-Audio support * small clean up * update discussion link * clarify mtmd_get_output_embd * clarification in multimodal.md * fix ultravox bug * ggml_cont
This commit is contained in:
parent
a08c1d2845
commit
40aaa8a403
9 changed files with 144 additions and 52 deletions
|
@ -254,7 +254,9 @@ struct clip_vision_model {
|
|||
ggml_tensor * post_ln_w;
|
||||
ggml_tensor * post_ln_b;
|
||||
|
||||
ggml_tensor * projection;
|
||||
ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
|
||||
ggml_tensor * mm_fc_w;
|
||||
ggml_tensor * mm_fc_b;
|
||||
|
||||
// LLaVA projection
|
||||
ggml_tensor * mm_input_norm_w = nullptr;
|
||||
|
@ -1471,48 +1473,58 @@ struct clip_graph {
|
|||
|
||||
cb(cur, "after_transformer", -1);
|
||||
|
||||
// StackAudioFrames
|
||||
// https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
|
||||
{
|
||||
int64_t stride = n_embd * hparams.proj_stack_factor;
|
||||
int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
|
||||
int64_t pad = padded_len - ggml_nelements(cur);
|
||||
if (pad > 0) {
|
||||
cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
|
||||
cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
|
||||
}
|
||||
cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
|
||||
ggml_row_size(cur->type, stride), 0);
|
||||
}
|
||||
|
||||
cb(cur, "after_stacked", -1);
|
||||
|
||||
// UltravoxProjector
|
||||
{
|
||||
// pre-norm
|
||||
cur = ggml_rms_norm(ctx0, cur, 1e-6);
|
||||
cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
|
||||
|
||||
// ffn in
|
||||
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
|
||||
|
||||
// swiglu
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_ULTRAVOX) {
|
||||
// StackAudioFrames
|
||||
// https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
|
||||
{
|
||||
int64_t split_point = cur->ne[0] / 2;
|
||||
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
|
||||
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
|
||||
|
||||
// see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
|
||||
x1 = ggml_silu(ctx0, x1);
|
||||
cur = ggml_mul(ctx0, x0, x1);
|
||||
int64_t stride = n_embd * hparams.proj_stack_factor;
|
||||
int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
|
||||
int64_t pad = padded_len - ggml_nelements(cur);
|
||||
if (pad > 0) {
|
||||
cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
|
||||
cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
|
||||
}
|
||||
cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
|
||||
ggml_row_size(cur->type, stride), 0);
|
||||
}
|
||||
|
||||
// mid-norm
|
||||
cur = ggml_rms_norm(ctx0, cur, 1e-6);
|
||||
cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
|
||||
cb(cur, "after_stacked", -1);
|
||||
|
||||
// ffn out
|
||||
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
|
||||
// UltravoxProjector
|
||||
{
|
||||
// pre-norm
|
||||
cur = ggml_rms_norm(ctx0, cur, 1e-6);
|
||||
cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
|
||||
|
||||
// ffn in
|
||||
cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
|
||||
|
||||
// swiglu
|
||||
{
|
||||
int64_t split_point = cur->ne[0] / 2;
|
||||
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
|
||||
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
|
||||
|
||||
// see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
|
||||
x1 = ggml_silu(ctx0, x1);
|
||||
cur = ggml_mul(ctx0, x0, x1);
|
||||
}
|
||||
|
||||
// mid-norm
|
||||
cur = ggml_rms_norm(ctx0, cur, 1e-6);
|
||||
cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
|
||||
|
||||
// ffn out
|
||||
cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
|
||||
}
|
||||
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) {
|
||||
// projector
|
||||
cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
|
||||
cur = ggml_add(ctx0, cur, model.mm_fc_b);
|
||||
|
||||
} else {
|
||||
GGML_ABORT("%s: unknown projector type", __func__);
|
||||
}
|
||||
|
||||
cb(cur, "projected", -1);
|
||||
|
@ -1655,6 +1667,17 @@ private:
|
|||
inpL = cur;
|
||||
}
|
||||
|
||||
// TODO @ngxson : find a way to move this outside
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) {
|
||||
ggml_tensor * cur = inpL;
|
||||
cur = ggml_transpose(ctx0, cur);
|
||||
cur = ggml_cont(ctx0, cur);
|
||||
cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
|
||||
cur = ggml_transpose(ctx0, cur);
|
||||
cur = ggml_cont(ctx0, cur);
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
// post-layernorm
|
||||
if (model.post_ln_w) {
|
||||
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
|
||||
|
@ -1952,6 +1975,7 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|||
res = graph.build_llama4();
|
||||
} break;
|
||||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
{
|
||||
res = graph.build_whisper_enc();
|
||||
} break;
|
||||
|
@ -2186,8 +2210,10 @@ struct clip_model_loader {
|
|||
};
|
||||
} break;
|
||||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
{
|
||||
get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor);
|
||||
bool require_stack = ctx_clip.proj_type == PROJECTOR_TYPE_ULTRAVOX;
|
||||
get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
|
||||
if (hparams.n_mel_bins != 128) {
|
||||
throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
|
||||
}
|
||||
|
@ -2266,7 +2292,7 @@ struct clip_model_loader {
|
|||
return cur;
|
||||
};
|
||||
|
||||
auto & vision_model = ctx_clip.vision_model;
|
||||
auto & vision_model = ctx_clip.vision_model; // TODO: rename this to just "model"
|
||||
|
||||
vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
|
||||
|
||||
|
@ -2463,6 +2489,15 @@ struct clip_model_loader {
|
|||
vision_model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
|
||||
vision_model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
{
|
||||
vision_model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
|
||||
vision_model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
|
||||
vision_model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
|
||||
vision_model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
|
||||
vision_model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
|
||||
vision_model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
|
||||
} break;
|
||||
case PROJECTOR_TYPE_INTERNVL:
|
||||
{
|
||||
vision_model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
|
||||
|
@ -3450,6 +3485,10 @@ int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * im
|
|||
const int proj_stack_factor = ctx->vision_model.hparams.proj_stack_factor;
|
||||
const int n_len = CLIP_ALIGN(img->nx, proj_stack_factor);
|
||||
n_patches = n_len / proj_stack_factor / 2;
|
||||
} else if (ctx->proj_type == PROJECTOR_TYPE_QWEN2A) {
|
||||
// divide by 2 because of whisper
|
||||
// another divide by 2 because of nn.AvgPool1d(2, stride=2)
|
||||
n_patches = img->nx / 4;
|
||||
}
|
||||
|
||||
return n_patches;
|
||||
|
@ -3850,6 +3889,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
case PROJECTOR_TYPE_GEMMA3:
|
||||
case PROJECTOR_TYPE_IDEFICS3:
|
||||
case PROJECTOR_TYPE_INTERNVL:
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
case PROJECTOR_TYPE_ULTRAVOX:
|
||||
{
|
||||
// do nothing
|
||||
|
@ -3910,7 +3950,7 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
|
|||
const int n_tokens_out = embeddings->ne[1];
|
||||
const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
|
||||
if (n_tokens_out != expected_n_tokens_out) {
|
||||
LOG_ERR("%s: expected %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
|
||||
LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
|
||||
GGML_ABORT("Invalid number of output tokens");
|
||||
}
|
||||
|
||||
|
@ -3955,6 +3995,8 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|||
return ctx->vision_model.mm_3_w->ne[1];
|
||||
case PROJECTOR_TYPE_LLAMA4:
|
||||
return ctx->vision_model.mm_model_proj->ne[1];
|
||||
case PROJECTOR_TYPE_QWEN2A:
|
||||
return ctx->vision_model.mm_fc_w->ne[1];
|
||||
default:
|
||||
GGML_ABORT("Unknown projector type");
|
||||
}
|
||||
|
@ -3991,6 +4033,10 @@ bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
|
|||
return ctx->vision_model.hparams.has_audio;
|
||||
}
|
||||
|
||||
bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
|
||||
return ctx->proj_type == PROJECTOR_TYPE_ULTRAVOX || ctx->proj_type == PROJECTOR_TYPE_QWEN2A;
|
||||
}
|
||||
|
||||
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
|
||||
clip_image_f32 clip_img;
|
||||
clip_img.buf.resize(h * w * 3);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue