convert-hf : support bfloat16 conversion (#7158)

* convert-hf : support bfloat16 conversion

* gguf-py : flake8 fixes

* convert-hf : add missing space after comma

* convert-hf : get bit-exact same output as ./quantize

The quantization version was missing.

* convert-hf : don't round bf16 NANs

* convert-hf : save some memory with np.int16 intermediate bf16 weights

* convert-hf : more closely match llama.cpp with which weights to keep in f32

* convert-hf : add --outtype auto-f16

A reason for this to exist is for model quantizers who want an initial
GGUF with the most fidelity to the original model while still using
a 16-bit float type instead of 32-bit floats.

* convert-hf : remove a semicolon because flake8 doesn't like it

It's a reflex from when programming in C/C++, I guess.

* convert-hf : support outtype templating in outfile name

* convert-hf : rename --outtype auto-f16 to --outtype auto
This commit is contained in:
compilade 2024-05-11 11:06:26 -04:00 committed by GitHub
parent fae9d234b6
commit 5a419926b0
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 404 additions and 182 deletions

View file

@ -12,7 +12,7 @@ import sys
from enum import IntEnum
from pathlib import Path
from hashlib import sha256
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast, overload
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
import numpy as np
import torch
@ -48,7 +48,6 @@ class Model:
dir_model: Path
ftype: int
fname_out: Path
is_big_endian: bool
endianess: gguf.GGUFEndian
use_temp_file: bool
@ -56,20 +55,20 @@ class Model:
part_names: list[str]
is_safetensors: bool
hparams: dict[str, Any]
gguf_writer: gguf.GGUFWriter
block_count: int
tensor_map: gguf.TensorNameMap
tensor_names: set[str] | None
fname_out: Path
gguf_writer: gguf.GGUFWriter
# subclasses should define this!
model_arch: gguf.MODEL_ARCH
def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
if self.__class__ == Model:
raise TypeError(f"{self.__class__.__name__!r} should not be directly instantiated")
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
self.dir_model = dir_model
self.ftype = ftype
self.fname_out = fname_out
self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
@ -79,10 +78,23 @@ class Model:
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, ".bin")
self.hparams = Model.load_hparams(self.dir_model)
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
if self.ftype == gguf.LlamaFileType.GUESSED:
# NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
_, first_tensor = next(self.get_tensors())
if first_tensor.dtype == torch.float16:
logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
self.ftype = gguf.LlamaFileType.MOSTLY_F16
else:
logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
self.ftype = gguf.LlamaFileType.MOSTLY_BF16
ftype_up: str = self.ftype.name.partition("_")[2].upper()
ftype_lw: str = ftype_up.lower()
# allow templating the file name with the output ftype, useful with the "auto" ftype
self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
self.gguf_writer = gguf.GGUFWriter(self.fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file)
@classmethod
def __init_subclass__(cls):
@ -142,14 +154,27 @@ class Model:
raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
name: str = gguf.TENSOR_NAMES[key]
if key not in gguf.MODEL_TENSORS[self.model_arch]:
raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
name: str = gguf.TENSOR_NAMES[key]
if "{bid}" in name:
assert bid is not None
name = name.format(bid=bid)
return name + suffix
def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
if key not in gguf.MODEL_TENSORS[self.model_arch]:
return False
key_name: str = gguf.TENSOR_NAMES[key]
if "{bid}" in key_name:
if bid is None:
return False
key_name = key_name.format(bid=bid)
else:
if bid is not None:
return False
return name == (key_name + suffix)
def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
if new_name is None:
@ -215,6 +240,23 @@ class Model:
return False
def write_tensors(self):
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def np_fp32_to_bf16(n: np.ndarray):
# force nan to quiet
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
# flush subnormals to zero
n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
# round to nearest even
n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
return n.astype(np.int16)
# Doing this row-wise is much, much faster than element-wise, hence the signature
v_fp32_to_bf16 = np.vectorize(np_fp32_to_bf16, otypes=[np.int16], signature="(n)->(n)")
if self.lazy:
# TODO: find a way to implicitly wrap np.vectorize functions
# NOTE: the type is changed to reflect otypes passed to np.vectorize above
v_fp32_to_bf16 = gguf.LazyNumpyTensor._wrap_fn(v_fp32_to_bf16, meta_noop=np.int16)
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
for name, data_torch in self.get_tensors():
@ -239,35 +281,60 @@ class Model:
data: np.ndarray = data # type hint
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
data_qtype: gguf.GGMLQuantizationType | None = None
# when both are True, f32 should win
extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
# Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
extra_f32 = extra_f32 or n_dims == 1 or new_name.endswith("_norm.weight")
# Conditions should closely match those in llama_model_quantize_internal in llama.cpp
extra_f32 = any(cond for cond in (
extra_f32,
n_dims == 1,
new_name.endswith("_norm.weight"),
))
# Some tensor types are always in float32
extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
gguf.MODEL_TENSOR.FFN_GATE_INP,
gguf.MODEL_TENSOR.POS_EMBD,
gguf.MODEL_TENSOR.TOKEN_TYPES,
))
# if f16 desired, convert any float32 2-dim weight tensors to float16
extra_f16 = extra_f16 or (name.endswith(".weight") and n_dims >= 2)
extra_f16 = any(cond for cond in (
extra_f16,
(name.endswith(".weight") and n_dims >= 2),
))
# when both extra_f32 and extra_f16 are False, convert to float32 by default
if self.ftype == 1 and data_dtype == np.float16 and (extra_f32 or not extra_f16):
data = data.astype(np.float32)
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
if self.ftype == gguf.LlamaFileType.MOSTLY_F16:
if data_dtype != np.float16:
data = data.astype(np.float16)
data_qtype = gguf.GGMLQuantizationType.F16
if self.ftype == 1 and data_dtype == np.float32 and extra_f16 and not extra_f32:
data = data.astype(np.float16)
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
if data_dtype != np.float32:
data = data.astype(np.float32)
data = v_fp32_to_bf16(data.view(np.int32))
assert data.dtype == np.int16
data_qtype = gguf.GGMLQuantizationType.BF16
else: # by default, convert to float32
if data_dtype != np.float32:
data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32
assert data_qtype is not None
# reverse shape to make it similar to the internal ggml dimension order
shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
# n_dims is implicit in the shape
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data.dtype}, shape = {shape_str}")
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
self.gguf_writer.add_tensor(new_name, data)
self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
def write(self):
self.write_tensors()
@ -2044,12 +2111,6 @@ class BertModel(Model):
return [(self.map_tensor_name(name), data_torch)]
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del new_name, bid, n_dims # unused
# not used with get_rows, must be F32
return name == "embeddings.token_type_embeddings.weight"
@Model.register("NomicBertModel")
class NomicBertModel(BertModel):
@ -2339,92 +2400,40 @@ class JinaBertV2Model(BertModel):
# tree of lazy tensors
class LazyTorchTensor:
_meta: Tensor
_data: Tensor | None
_args: tuple
_func: Callable[[tuple], Tensor] | None
def __init__(self, *, meta: Tensor, data: Tensor | None = None, args: tuple = (), func: Callable[[tuple], Tensor] | None = None):
self._meta = meta
self._data = data
self._args = args
self._func = func
@staticmethod
def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any:
# TODO: dict and set
if isinstance(o, (list, tuple)):
L = []
for item in o:
L.append(LazyTorchTensor._recurse_apply(item, fn))
if isinstance(o, tuple):
L = tuple(L)
return L
elif isinstance(o, LazyTorchTensor):
return fn(o)
else:
return o
def _wrap_fn(self, fn: Callable, use_self: bool = False) -> Callable[[Any], LazyTorchTensor]:
def wrapped_fn(*args, **kwargs):
if kwargs is None:
kwargs = {}
args = ((self,) if use_self else ()) + args
meta_args = LazyTorchTensor._recurse_apply(args, lambda t: t._meta)
return LazyTorchTensor(meta=fn(*meta_args, **kwargs), args=args, func=lambda a: fn(*a, **kwargs))
return wrapped_fn
def __getattr__(self, __name: str) -> Any:
meta_attr = getattr(self._meta, __name)
if callable(meta_attr):
return self._wrap_fn(getattr(torch.Tensor, __name), use_self=True)
elif isinstance(meta_attr, torch.Tensor):
# for things like self.T
return self._wrap_fn(lambda s: getattr(s, __name))(self)
else:
return meta_attr
class LazyTorchTensor(gguf.LazyBase):
_tensor_type = torch.Tensor
# to keep the type-checker happy
dtype: torch.dtype
shape: torch.Size
# only used when converting a torch.Tensor to a np.ndarray
_dtype_map: dict[torch.dtype, type] = {
torch.float16: np.float16,
torch.float32: np.float32,
}
def numpy(self) -> gguf.LazyTensor:
def numpy(self) -> gguf.LazyNumpyTensor:
dtype = self._dtype_map[self.dtype]
return gguf.LazyTensor(lambda: LazyTorchTensor.to_eager(self).numpy(), dtype=dtype, shape=self.shape)
return gguf.LazyNumpyTensor(
meta=np.lib.stride_tricks.as_strided(np.zeros(1, dtype), self.shape, (0 for _ in self.shape)),
lazy=self._lazy,
args=(self,),
func=(lambda s: s[0].numpy())
)
@overload
@staticmethod
def to_eager(t: Tensor | LazyTorchTensor) -> Tensor: ...
@overload
@staticmethod
def to_eager(t: tuple) -> tuple: ...
@staticmethod
def to_eager(t: Any) -> Any:
def simple_to_eager(_t: LazyTorchTensor) -> Tensor:
# wake up the lazy tensor
if _t._data is None and _t._func is not None:
# recurse into its arguments
_t._args = LazyTorchTensor.to_eager(_t._args)
_t._data = _t._func(_t._args)
if _t._data is not None:
return _t._data
else:
raise ValueError(f"Could not compute lazy tensor {_t!r} with args {_t._args!r}")
# recurse into lists and/or tuples, keeping their structure
return LazyTorchTensor._recurse_apply(t, simple_to_eager)
@staticmethod
def from_eager(t: Tensor) -> Tensor:
if (t.__class__ == LazyTorchTensor):
@classmethod
def eager_to_meta(cls, t: Tensor) -> Tensor:
if t.is_meta:
return t
return LazyTorchTensor(meta=t.detach().to("meta"), data=t) # type: ignore
return t.detach().to("meta")
@classmethod
def meta_with_dtype(cls, m: Tensor, dtype: torch.dtype) -> Tensor:
m = m.detach()
if not m.is_meta:
m = m.to("meta")
m.dtype = dtype
return m
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
@ -2435,28 +2444,8 @@ class LazyTorchTensor:
if func is torch.Tensor.numpy:
return args[0].numpy()
if func is torch.equal:
eager_args = LazyTorchTensor.to_eager(args)
return func(*eager_args, **kwargs)
return LazyTorchTensor._wrap_fn(args[0], func)(*args, **kwargs)
# special methods bypass __getattr__, so they need to be added manually
# ref: https://docs.python.org/3/reference/datamodel.html#special-lookup
# NOTE: LazyTorchTensor can't be a subclass of Tensor (and then be used
# as self._meta is currently used), because then the following
# operations would by default not be wrapped, and so not propagated
# when the tensor is made eager.
# It's better to get non-silent errors for not-yet-supported operators.
# TODO: add more when needed to avoid clutter, or find a more concise way
def __neg__(self, *args): # mamba
return self._wrap_fn(torch.Tensor.__neg__)(self, *args)
def __add__(self, *args): # gemma
return self._wrap_fn(torch.Tensor.__add__)(self, *args)
def __getitem__(self, *args): # bloom falcon refact internlm2
return self._wrap_fn(torch.Tensor.__getitem__)(self, *args)
return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
def parse_args() -> argparse.Namespace:
@ -2472,11 +2461,11 @@ def parse_args() -> argparse.Namespace:
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input",
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16"], default="f16",
help="output format - use f32 for float32, f16 for float16",
"--outtype", type=str, choices=["f32", "f16", "bf16", "auto"], default="f16",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
"--bigendian", action="store_true",
@ -2530,16 +2519,18 @@ def main() -> None:
logger.error(f'Error: {args.model} is not a directory')
sys.exit(1)
ftype_map = {
"f32": gguf.GGMLQuantizationType.F32,
"f16": gguf.GGMLQuantizationType.F16,
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"auto": gguf.LlamaFileType.GUESSED,
}
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
fname_out = dir_model / 'ggml-model-{ftype}.gguf'
logger.info(f"Loading model: {dir_model.name}")
@ -2555,14 +2546,16 @@ def main() -> None:
logger.info("Set model tokenizer")
model_instance.set_vocab()
model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
if args.vocab_only:
logger.info(f"Exporting model vocab to '{fname_out}'")
logger.info(f"Exporting model vocab to '{model_instance.fname_out}'")
model_instance.write_vocab()
else:
logger.info(f"Exporting model to '{fname_out}'")
logger.info(f"Exporting model to '{model_instance.fname_out}'")
model_instance.write()
logger.info(f"Model successfully exported to '{fname_out}'")
logger.info(f"Model successfully exported to '{model_instance.fname_out}'")
if __name__ == '__main__':