parent
0cf6725e9f
commit
611aa914ef
4 changed files with 458 additions and 293 deletions
|
|
@ -306,28 +306,30 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
|
||||
|
|
@ -650,7 +652,8 @@ static void ggml_metal_mem_pool_reset(struct ggml_metal_mem_pool * mem_pool) {
|
|||
}
|
||||
|
||||
if (mem_pool->heaps_to_remove.count > 0) {
|
||||
for (NSUInteger i = 0; i < [mem_pool->heaps_to_remove count]; i++) {
|
||||
// remove in reverse order
|
||||
for (NSUInteger i = [mem_pool->heaps_to_remove count] - 1; ; --i) {
|
||||
NSUInteger index = [[mem_pool->heaps_to_remove objectAtIndex:i] intValue];
|
||||
ggml_metal_heap_ptr * ptr = [mem_pool->heaps objectAtIndex:index];
|
||||
|
||||
|
|
@ -659,6 +662,10 @@ static void ggml_metal_mem_pool_reset(struct ggml_metal_mem_pool * mem_pool) {
|
|||
|
||||
[mem_pool->heaps removeObjectAtIndex:index];
|
||||
[ptr release];
|
||||
|
||||
if (i == 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
[mem_pool->heaps_to_remove removeAllObjects];
|
||||
|
|
@ -672,7 +679,7 @@ static void ggml_metal_mem_pool_clear(struct ggml_metal_mem_pool * mem_pool) {
|
|||
}
|
||||
|
||||
static id<MTLBuffer> ggml_metal_mem_pool_alloc(struct ggml_metal_mem_pool * mem_pool, size_t size) {
|
||||
const size_t alignment = 32;
|
||||
const size_t alignment = 256;
|
||||
|
||||
const size_t size_aligned = GGML_PAD(size, alignment);
|
||||
|
||||
|
|
@ -1242,28 +1249,30 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, mul_mm_id_bf16_f32, has_simdgroup_mm && use_bfloat);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16, mul_mm_id_map0_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32, mul_mm_id_map1_f32, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, mul_mm_id_f32_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, mul_mm_id_f16_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16, mul_mm_id_bf16_f16, has_simdgroup_mm && use_bfloat);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16, mul_mm_id_q4_0_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16, mul_mm_id_q4_1_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16, mul_mm_id_q5_0_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16, mul_mm_id_q5_1_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16, mul_mm_id_q8_0_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16, mul_mm_id_q2_K_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16, mul_mm_id_q3_K_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16, mul_mm_id_q4_K_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16, mul_mm_id_q5_K_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16, mul_mm_id_q6_K_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16, mul_mm_id_iq2_xxs_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16, mul_mm_id_iq2_xs_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16, mul_mm_id_iq3_xxs_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16, mul_mm_id_iq3_s_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16, mul_mm_id_iq2_s_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16, mul_mm_id_iq1_s_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16, mul_mm_id_iq1_m_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16, mul_mm_id_iq4_nl_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16, mul_mm_id_iq4_xs_f16, has_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
|
||||
|
|
@ -2999,7 +3008,7 @@ static bool ggml_metal_encode_node(
|
|||
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||
|
||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
} else {
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
|
|
@ -3219,8 +3228,6 @@ static bool ggml_metal_encode_node(
|
|||
} break;
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
{
|
||||
const int n_as = src0->ne[2];
|
||||
|
||||
// src2 = ids
|
||||
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
|
||||
|
||||
|
|
@ -3234,24 +3241,21 @@ static bool ggml_metal_encode_node(
|
|||
GGML_ASSERT(ne03 == 1);
|
||||
GGML_ASSERT(ne13 == 1);
|
||||
|
||||
const uint32_t r2 = 1;
|
||||
const uint32_t r3 = 1;
|
||||
|
||||
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
||||
// to the matrix-vector kernel
|
||||
// ne20 = n_used_experts
|
||||
// ne21 = n_rows
|
||||
const int dst_rows = ne20*ne21;
|
||||
const int dst_rows_min = n_as;
|
||||
const int dst_rows_max = (device.maxThreadgroupMemoryLength/2 - 8192)/4;
|
||||
|
||||
// max size of the rowids array in the kernel shared buffer
|
||||
//GGML_ASSERT(dst_rows <= dst_rows_max);
|
||||
// ne21 = n_rows (batch size)
|
||||
const int ne21_mm_id_min = 32;
|
||||
|
||||
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
||||
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
||||
if ([device supportsFamily:MTLGPUFamilyApple7] &&
|
||||
ne00 % 32 == 0 && ne00 >= 64 &&
|
||||
//ne01 / ne02 >= 512 && // NOTE: this is based on Mixtral shapes, might need adjustments
|
||||
dst_rows > dst_rows_min &&
|
||||
dst_rows <= dst_rows_max) {
|
||||
(ne21 >= ne21_mm_id_min)) {
|
||||
GGML_ASSERT(ne00 % 4 == 0);
|
||||
|
||||
// some Metal matrix data types require aligned pointers
|
||||
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
|
||||
|
|
@ -3262,62 +3266,169 @@ static bool ggml_metal_encode_node(
|
|||
default: break;
|
||||
}
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
const int64_t neh10 = ne10; // n_embd
|
||||
const int64_t neh11 = ne21; // n_tokens
|
||||
const int64_t neh12 = ne02; // n_expert
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break;
|
||||
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
|
||||
default: GGML_ABORT("MUL_MAT_ID not implemented");
|
||||
const uint64_t nbh10 = ggml_type_size(GGML_TYPE_F16);
|
||||
const uint64_t nbh11 = nbh10*neh10;
|
||||
const uint64_t nbh12 = nbh11*neh11;
|
||||
const uint64_t nbh13 = nbh12*neh12;
|
||||
|
||||
const size_t s_src1 = ggml_type_size(GGML_TYPE_F16)*neh10*neh11*neh12;
|
||||
id<MTLBuffer> h_src1 = ggml_metal_mem_pool_alloc(mem_pool, s_src1);
|
||||
if (!h_src1) {
|
||||
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_src1);
|
||||
return false;
|
||||
}
|
||||
|
||||
ggml_metal_kargs_mul_mm_id args = {
|
||||
/*.nei0 =*/ ne20,
|
||||
/*.nei1 =*/ ne21,
|
||||
/*.nbi1 =*/ nb21,
|
||||
/*.ne00 =*/ ne00,
|
||||
/*.ne02 =*/ ne02,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.ne11 =*/ ne11,
|
||||
/*.ne12 =*/ ne12,
|
||||
/*.ne13 =*/ ne13,
|
||||
/*.nb10 =*/ nb10,
|
||||
/*.nb11 =*/ nb11,
|
||||
/*.nb12 =*/ nb12,
|
||||
/*.ne0 =*/ ne0,
|
||||
/*.ne1 =*/ ne1,
|
||||
};
|
||||
const int64_t neh0 = ne0;
|
||||
const int64_t neh1 = ne21;
|
||||
const int64_t neh2 = ne02;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:4];
|
||||
const uint64_t nbh0 = ggml_type_size(GGML_TYPE_F32);
|
||||
const uint64_t nbh1 = nbh0*neh0;
|
||||
const uint64_t nbh2 = nbh1*neh1;
|
||||
//const uint64_t nbh3 = nbh2*neh2;
|
||||
|
||||
[encoder setThreadgroupMemoryLength:GGML_PAD(8192 + dst_rows*4/*sizeof(ushort2)*/, 16) atIndex:0];
|
||||
const size_t s_dst = ggml_type_size(GGML_TYPE_F32)*neh0*neh1*neh2;
|
||||
id<MTLBuffer> h_dst = ggml_metal_mem_pool_alloc(mem_pool, s_dst);
|
||||
if (!h_dst) {
|
||||
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_dst);
|
||||
return false;
|
||||
}
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
// tokens per expert
|
||||
const size_t s_tpe = ggml_type_size(GGML_TYPE_I32)*ne02;
|
||||
id<MTLBuffer> h_tpe = ggml_metal_mem_pool_alloc(mem_pool, s_tpe);
|
||||
if (!h_tpe) {
|
||||
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_tpe);
|
||||
return false;
|
||||
}
|
||||
|
||||
// id map
|
||||
// [n_expert_used, n_tokens]
|
||||
const size_t s_ids = ggml_type_size(GGML_TYPE_I32)*ne20*ne21;
|
||||
id<MTLBuffer> h_ids = ggml_metal_mem_pool_alloc(mem_pool, s_ids);
|
||||
if (!h_ids) {
|
||||
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_ids);
|
||||
return false;
|
||||
}
|
||||
|
||||
{
|
||||
const int nth = MIN(1024, ne10/4);
|
||||
|
||||
ggml_metal_kargs_mul_mm_id_map0 args = {
|
||||
ne10,
|
||||
ne11, // n_expert_used (bcast)
|
||||
nb11,
|
||||
nb12,
|
||||
neh11, // n_tokens
|
||||
nbh11,
|
||||
ne20, // n_expert_used
|
||||
nb21,
|
||||
};
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||
[encoder setBuffer: h_src1 offset:0 atIndex:3];
|
||||
[encoder setBuffer: h_tpe offset:0 atIndex:4];
|
||||
[encoder setBuffer: h_ids offset:0 atIndex:5];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne02, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
}
|
||||
|
||||
{
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16 ].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16 ].pipeline; break;
|
||||
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16 ].pipeline; break;
|
||||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16].pipeline; break;
|
||||
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16 ].pipeline; break;
|
||||
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16 ].pipeline; break;
|
||||
default: GGML_ABORT("MUL_MAT_ID not implemented");
|
||||
}
|
||||
|
||||
ggml_metal_kargs_mul_mm_id args = {
|
||||
/*.ne00 =*/ ne00,
|
||||
/*.ne02 =*/ ne02,
|
||||
/*.nb01 =*/ nb01,
|
||||
/*.nb02 =*/ nb02,
|
||||
/*.nb03 =*/ nb03,
|
||||
/*.neh12 =*/ neh12,
|
||||
/*.nbh10 =*/ nbh10,
|
||||
/*.nbh11 =*/ nbh11,
|
||||
/*.nbh12 =*/ nbh12,
|
||||
/*.nbh13 =*/ nbh13,
|
||||
/*.neh0 =*/ neh0,
|
||||
/*.neh1 =*/ neh1,
|
||||
/*.r2 =*/ r2,
|
||||
/*.r3 =*/ r3,
|
||||
};
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
||||
[encoder setBuffer: h_src1 offset:0 atIndex:2];
|
||||
[encoder setBuffer: h_tpe offset:0 atIndex:3];
|
||||
[encoder setBuffer: h_dst offset:0 atIndex:4];
|
||||
|
||||
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, ne02) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
||||
}
|
||||
|
||||
{
|
||||
GGML_ASSERT(ne0 % 4 == 0);
|
||||
|
||||
const int nth = MIN(1024, ne0/4);
|
||||
|
||||
ggml_metal_kargs_mul_mm_id_map1 args = {
|
||||
ne20, // n_expert_used
|
||||
neh0,
|
||||
neh1,
|
||||
nbh1,
|
||||
nbh2,
|
||||
ne0,
|
||||
nb1,
|
||||
nb2,
|
||||
};
|
||||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32].pipeline;
|
||||
|
||||
[encoder setComputePipelineState:pipeline];
|
||||
[encoder setBytes:&args length:sizeof(args) atIndex:0];
|
||||
[encoder setBuffer: h_dst offset:0 atIndex:1];
|
||||
[encoder setBuffer: h_ids offset:0 atIndex:2];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne20, ne21, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
}
|
||||
} else {
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
|
|
@ -3511,7 +3622,7 @@ static bool ggml_metal_encode_node(
|
|||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:4];
|
||||
|
||||
const int64_t _ne1 = 1;
|
||||
const int64_t ne123 = dst_rows;
|
||||
const int64_t ne123 = ne20*ne21;
|
||||
|
||||
if (smem > 0) {
|
||||
[encoder setThreadgroupMemoryLength:smem atIndex:0];
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue