metal : optimize MoE for large batches (#13388)

ggml-ci
This commit is contained in:
Georgi Gerganov 2025-05-09 15:14:56 +03:00 committed by GitHub
parent 0cf6725e9f
commit 611aa914ef
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 458 additions and 293 deletions

View file

@ -299,21 +299,42 @@ typedef struct {
} ggml_metal_kargs_mul_mv_ext; } ggml_metal_kargs_mul_mv_ext;
typedef struct { typedef struct {
int32_t nei0; int32_t ne10;
int32_t nei1; int32_t ne11; // n_expert_used (bcast)
uint64_t nbi1; uint64_t nb11;
uint64_t nb12;
int32_t neh11; // n_tokens
uint64_t nbh11;
int32_t ne20; // n_expert_used
uint64_t nb21;
} ggml_metal_kargs_mul_mm_id_map0;
typedef struct {
int32_t ne20; // n_expert_used
int32_t neh0;
int32_t neh1;
uint64_t nbh1;
uint64_t nbh2;
int32_t ne0;
uint64_t nb1;
uint64_t nb2;
} ggml_metal_kargs_mul_mm_id_map1;
typedef struct {
int32_t ne00; int32_t ne00;
int32_t ne02; int32_t ne02;
uint64_t nb01; uint64_t nb01;
uint64_t nb02; uint64_t nb02;
int32_t ne11; uint64_t nb03;
int32_t ne12; int32_t neh12;
int32_t ne13; uint64_t nbh10;
uint64_t nb10; uint64_t nbh11;
uint64_t nb11; uint64_t nbh12;
uint64_t nb12; uint64_t nbh13;
int32_t ne0; int32_t neh0;
int32_t ne1; int32_t neh1;
int16_t r2;
int16_t r3;
} ggml_metal_kargs_mul_mm_id; } ggml_metal_kargs_mul_mm_id;
typedef struct { typedef struct {

View file

@ -306,28 +306,30 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16,
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16,
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
@ -650,7 +652,8 @@ static void ggml_metal_mem_pool_reset(struct ggml_metal_mem_pool * mem_pool) {
} }
if (mem_pool->heaps_to_remove.count > 0) { if (mem_pool->heaps_to_remove.count > 0) {
for (NSUInteger i = 0; i < [mem_pool->heaps_to_remove count]; i++) { // remove in reverse order
for (NSUInteger i = [mem_pool->heaps_to_remove count] - 1; ; --i) {
NSUInteger index = [[mem_pool->heaps_to_remove objectAtIndex:i] intValue]; NSUInteger index = [[mem_pool->heaps_to_remove objectAtIndex:i] intValue];
ggml_metal_heap_ptr * ptr = [mem_pool->heaps objectAtIndex:index]; ggml_metal_heap_ptr * ptr = [mem_pool->heaps objectAtIndex:index];
@ -659,6 +662,10 @@ static void ggml_metal_mem_pool_reset(struct ggml_metal_mem_pool * mem_pool) {
[mem_pool->heaps removeObjectAtIndex:index]; [mem_pool->heaps removeObjectAtIndex:index];
[ptr release]; [ptr release];
if (i == 0) {
break;
}
} }
[mem_pool->heaps_to_remove removeAllObjects]; [mem_pool->heaps_to_remove removeAllObjects];
@ -672,7 +679,7 @@ static void ggml_metal_mem_pool_clear(struct ggml_metal_mem_pool * mem_pool) {
} }
static id<MTLBuffer> ggml_metal_mem_pool_alloc(struct ggml_metal_mem_pool * mem_pool, size_t size) { static id<MTLBuffer> ggml_metal_mem_pool_alloc(struct ggml_metal_mem_pool * mem_pool, size_t size) {
const size_t alignment = 32; const size_t alignment = 256;
const size_t size_aligned = GGML_PAD(size, alignment); const size_t size_aligned = GGML_PAD(size, alignment);
@ -1242,28 +1249,30 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16, mul_mm_id_map0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32, mul_mm_id_map1_f32, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32, mul_mm_id_bf16_f32, has_simdgroup_mm && use_bfloat); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16, mul_mm_id_f32_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16, mul_mm_id_f16_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16, mul_mm_id_bf16_f16, has_simdgroup_mm && use_bfloat);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16, mul_mm_id_q4_0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16, mul_mm_id_q4_1_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16, mul_mm_id_q5_0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16, mul_mm_id_q5_1_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16, mul_mm_id_q8_0_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16, mul_mm_id_q2_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16, mul_mm_id_q3_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16, mul_mm_id_q4_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16, mul_mm_id_q5_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16, mul_mm_id_q6_K_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16, mul_mm_id_iq2_xxs_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16, mul_mm_id_iq2_xs_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16, mul_mm_id_iq3_xxs_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16, mul_mm_id_iq3_s_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16, mul_mm_id_iq2_s_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16, mul_mm_id_iq1_s_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, has_simdgroup_mm); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16, mul_mm_id_iq1_m_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16, mul_mm_id_iq4_nl_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16, mul_mm_id_iq4_xs_f16, has_simdgroup_mm);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true); GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
@ -2999,7 +3008,7 @@ static bool ggml_metal_encode_node(
[encoder setBuffer:id_dst offset:offs_dst atIndex:3]; [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
[encoder setThreadgroupMemoryLength:8192 atIndex:0]; [encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else { } else {
id<MTLComputePipelineState> pipeline = nil; id<MTLComputePipelineState> pipeline = nil;
@ -3219,8 +3228,6 @@ static bool ggml_metal_encode_node(
} break; } break;
case GGML_OP_MUL_MAT_ID: case GGML_OP_MUL_MAT_ID:
{ {
const int n_as = src0->ne[2];
// src2 = ids // src2 = ids
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t); const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
@ -3234,24 +3241,21 @@ static bool ggml_metal_encode_node(
GGML_ASSERT(ne03 == 1); GGML_ASSERT(ne03 == 1);
GGML_ASSERT(ne13 == 1); GGML_ASSERT(ne13 == 1);
const uint32_t r2 = 1;
const uint32_t r3 = 1;
// find the break-even point where the matrix-matrix kernel becomes more efficient compared // find the break-even point where the matrix-matrix kernel becomes more efficient compared
// to the matrix-vector kernel // to the matrix-vector kernel
// ne20 = n_used_experts // ne20 = n_used_experts
// ne21 = n_rows // ne21 = n_rows (batch size)
const int dst_rows = ne20*ne21; const int ne21_mm_id_min = 32;
const int dst_rows_min = n_as;
const int dst_rows_max = (device.maxThreadgroupMemoryLength/2 - 8192)/4;
// max size of the rowids array in the kernel shared buffer
//GGML_ASSERT(dst_rows <= dst_rows_max);
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
if ([device supportsFamily:MTLGPUFamilyApple7] && if ([device supportsFamily:MTLGPUFamilyApple7] &&
ne00 % 32 == 0 && ne00 >= 64 && ne00 % 32 == 0 && ne00 >= 64 &&
//ne01 / ne02 >= 512 && // NOTE: this is based on Mixtral shapes, might need adjustments (ne21 >= ne21_mm_id_min)) {
dst_rows > dst_rows_min && GGML_ASSERT(ne00 % 4 == 0);
dst_rows <= dst_rows_max) {
// some Metal matrix data types require aligned pointers // some Metal matrix data types require aligned pointers
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5) // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
@ -3262,62 +3266,169 @@ static bool ggml_metal_encode_node(
default: break; default: break;
} }
const int64_t neh10 = ne10; // n_embd
const int64_t neh11 = ne21; // n_tokens
const int64_t neh12 = ne02; // n_expert
const uint64_t nbh10 = ggml_type_size(GGML_TYPE_F16);
const uint64_t nbh11 = nbh10*neh10;
const uint64_t nbh12 = nbh11*neh11;
const uint64_t nbh13 = nbh12*neh12;
const size_t s_src1 = ggml_type_size(GGML_TYPE_F16)*neh10*neh11*neh12;
id<MTLBuffer> h_src1 = ggml_metal_mem_pool_alloc(mem_pool, s_src1);
if (!h_src1) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_src1);
return false;
}
const int64_t neh0 = ne0;
const int64_t neh1 = ne21;
const int64_t neh2 = ne02;
const uint64_t nbh0 = ggml_type_size(GGML_TYPE_F32);
const uint64_t nbh1 = nbh0*neh0;
const uint64_t nbh2 = nbh1*neh1;
//const uint64_t nbh3 = nbh2*neh2;
const size_t s_dst = ggml_type_size(GGML_TYPE_F32)*neh0*neh1*neh2;
id<MTLBuffer> h_dst = ggml_metal_mem_pool_alloc(mem_pool, s_dst);
if (!h_dst) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_dst);
return false;
}
// tokens per expert
const size_t s_tpe = ggml_type_size(GGML_TYPE_I32)*ne02;
id<MTLBuffer> h_tpe = ggml_metal_mem_pool_alloc(mem_pool, s_tpe);
if (!h_tpe) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_tpe);
return false;
}
// id map
// [n_expert_used, n_tokens]
const size_t s_ids = ggml_type_size(GGML_TYPE_I32)*ne20*ne21;
id<MTLBuffer> h_ids = ggml_metal_mem_pool_alloc(mem_pool, s_ids);
if (!h_ids) {
GGML_LOG_ERROR("%s: failed to allocate buffer from memory pool, size = %zu\n", __func__, s_ids);
return false;
}
{
const int nth = MIN(1024, ne10/4);
ggml_metal_kargs_mul_mm_id_map0 args = {
ne10,
ne11, // n_expert_used (bcast)
nb11,
nb12,
neh11, // n_tokens
nbh11,
ne20, // n_expert_used
nb21,
};
id<MTLComputePipelineState> pipeline = nil;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP0_F16].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
[encoder setBuffer: h_src1 offset:0 atIndex:3];
[encoder setBuffer: h_tpe offset:0 atIndex:4];
[encoder setBuffer: h_ids offset:0 atIndex:5];
[encoder dispatchThreadgroups:MTLSizeMake(ne02, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
{
id<MTLComputePipelineState> pipeline = nil; id<MTLComputePipelineState> pipeline = nil;
switch (src0->type) { switch (src0->type) {
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break; case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F16 ].pipeline; break;
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break; case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F16 ].pipeline; break;
case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F32 ].pipeline; break; case GGML_TYPE_BF16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_BF16_F16 ].pipeline; break;
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break; case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F16 ].pipeline; break;
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break; case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F16 ].pipeline; break;
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break; case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F16 ].pipeline; break;
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32 ].pipeline; break; case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F16 ].pipeline; break;
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32 ].pipeline; break; case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F16 ].pipeline; break;
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32 ].pipeline; break; case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F16 ].pipeline; break;
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32 ].pipeline; break; case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F16 ].pipeline; break;
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32 ].pipeline; break; case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F16 ].pipeline; break;
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32 ].pipeline; break; case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F16 ].pipeline; break;
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break; case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F16 ].pipeline; break;
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break; case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F16].pipeline; break;
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break; case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F16 ].pipeline; break;
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break; case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F16].pipeline; break;
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break; case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F16 ].pipeline; break;
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break; case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F16 ].pipeline; break;
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break; case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F16 ].pipeline; break;
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break; case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F16 ].pipeline; break;
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break; case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F16 ].pipeline; break;
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F16 ].pipeline; break;
default: GGML_ABORT("MUL_MAT_ID not implemented"); default: GGML_ABORT("MUL_MAT_ID not implemented");
} }
ggml_metal_kargs_mul_mm_id args = { ggml_metal_kargs_mul_mm_id args = {
/*.nei0 =*/ ne20,
/*.nei1 =*/ ne21,
/*.nbi1 =*/ nb21,
/*.ne00 =*/ ne00, /*.ne00 =*/ ne00,
/*.ne02 =*/ ne02, /*.ne02 =*/ ne02,
/*.nb01 =*/ nb01, /*.nb01 =*/ nb01,
/*.nb02 =*/ nb02, /*.nb02 =*/ nb02,
/*.ne11 =*/ ne11, /*.nb03 =*/ nb03,
/*.ne12 =*/ ne12, /*.neh12 =*/ neh12,
/*.ne13 =*/ ne13, /*.nbh10 =*/ nbh10,
/*.nb10 =*/ nb10, /*.nbh11 =*/ nbh11,
/*.nb11 =*/ nb11, /*.nbh12 =*/ nbh12,
/*.nb12 =*/ nb12, /*.nbh13 =*/ nbh13,
/*.ne0 =*/ ne0, /*.neh0 =*/ neh0,
/*.ne1 =*/ ne1, /*.neh1 =*/ neh1,
/*.r2 =*/ r2,
/*.r3 =*/ r3,
}; };
[encoder setComputePipelineState:pipeline]; [encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0]; [encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:2]; [encoder setBuffer: h_src1 offset:0 atIndex:2];
[encoder setBuffer: h_tpe offset:0 atIndex:3];
[encoder setBuffer: h_dst offset:0 atIndex:4];
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, ne02) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
}
{
GGML_ASSERT(ne0 % 4 == 0);
const int nth = MIN(1024, ne0/4);
ggml_metal_kargs_mul_mm_id_map1 args = {
ne20, // n_expert_used
neh0,
neh1,
nbh1,
nbh2,
ne0,
nb1,
nb2,
};
id<MTLComputePipelineState> pipeline = nil;
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_MAP1_F32].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBytes:&args length:sizeof(args) atIndex:0];
[encoder setBuffer: h_dst offset:0 atIndex:1];
[encoder setBuffer: h_ids offset:0 atIndex:2];
[encoder setBuffer:id_dst offset:offs_dst atIndex:3]; [encoder setBuffer:id_dst offset:offs_dst atIndex:3];
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:4];
[encoder setThreadgroupMemoryLength:GGML_PAD(8192 + dst_rows*4/*sizeof(ushort2)*/, 16) atIndex:0]; [encoder dispatchThreadgroups:MTLSizeMake(ne20, ne21, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
}
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
} else { } else {
id<MTLComputePipelineState> pipeline = nil; id<MTLComputePipelineState> pipeline = nil;
@ -3511,7 +3622,7 @@ static bool ggml_metal_encode_node(
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:4]; [encoder setBuffer:id_src2 offset:offs_src2 atIndex:4];
const int64_t _ne1 = 1; const int64_t _ne1 = 1;
const int64_t ne123 = dst_rows; const int64_t ne123 = ne20*ne21;
if (smem > 0) { if (smem > 0) {
[encoder setThreadgroupMemoryLength:smem atIndex:0]; [encoder setThreadgroupMemoryLength:smem atIndex:0];

View file

@ -6336,127 +6336,219 @@ kernel void kernel_mul_mm(
} }
} }
// same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in rowids template<typename T4>
// TODO: this kernel needs to be reimplemented from scratch for better performance kernel void kernel_mul_mm_id_map0(
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)> constant ggml_metal_kargs_mul_mm_id_map0 & args,
void kernel_mul_mm_id_impl( device const char * src1,
int32_t ne00, device const char * src2,
int32_t ne02, device char * hsrc1,
uint64_t nb01, device char * htpe,
uint64_t nb02, device char * hids,
int32_t ne11, uint3 tgpig[[threadgroup_position_in_grid]],
int32_t ne12, ushort3 tpitg[[thread_position_in_threadgroup]],
uint64_t nb10, ushort3 ntg[[threads_per_threadgroup]]) {
uint64_t nb11, const int ide = tgpig[0]; // expert id
uint64_t nb12,
int32_t ne0, int n_all = 0;
int32_t ne1,
int64_t ne0ne1, device int32_t * ids_i32 = (device int32_t *) (hids);
for (int i21 = 0; i21 < args.neh11; i21++) { // n_tokens
device const int32_t * src2_i32 = (device const int32_t *) (src2 + i21*args.nb21);
for (int i20 = 0; i20 < args.ne20; i20++) { // n_expert_used
if (src2_i32[i20] != ide) {
continue;
}
device const float4 * src1_f32x4 = (device const float4 *) ( src1 + i21*args.nb12 + (i20%args.ne11)*args.nb11);
device T4 * hsrc1_f32x4 = (device T4 *) (hsrc1 + (ide*args.neh11 + n_all)*args.nbh11);
for (int64_t i00 = tpitg.x; i00 < args.ne10/4; i00 += ntg.x) {
hsrc1_f32x4[i00] = (T4) (src1_f32x4[i00]);
}
if (tpitg.x == 0) {
ids_i32[i21*args.ne20 + i20] = ide*args.neh11 + n_all;
}
++n_all;
}
}
if (tpitg.x == 0) {
device int32_t * tpe_i32 = (device int32_t *) (htpe);
tpe_i32[ide] = n_all;
}
}
typedef decltype(kernel_mul_mm_id_map0<half4>) kernel_mul_mm_id_map0_t;
template [[host_name("kernel_mul_mm_id_map0_f16")]] kernel kernel_mul_mm_id_map0_t kernel_mul_mm_id_map0<half4>;
template<typename T>
kernel void kernel_mul_mm_id_map1(
constant ggml_metal_kargs_mul_mm_id_map1 & args,
device const char * hdst,
device const char * hids,
device char * dst,
uint3 tgpig[[threadgroup_position_in_grid]],
ushort3 tpitg[[thread_position_in_threadgroup]],
ushort3 ntg[[threads_per_threadgroup]]) {
const int i20 = tgpig[0]; // used expert
const int i21 = tgpig[1]; // token
device const int32_t * ids_i32 = (device const int32_t *) (hids);
device float4 * dst_f32x4 = (device float4 *) (dst + i20*args.nb1 + i21*args.nb2);
const int id = ids_i32[i21*args.ne20 + i20];
const int ide = id / args.neh1;
const int idt = id % args.neh1;
device const float4 * hdst_f32x4 = (device const float4 *) (hdst + idt*args.nbh1 + ide*args.nbh2);
for (int64_t i0 = tpitg.x; i0 < args.neh0/4; i0 += ntg.x) {
dst_f32x4[i0] = hdst_f32x4[i0];
}
}
typedef decltype(kernel_mul_mm_id_map1<float>) kernel_mul_mm_id_map1_t;
template [[host_name("kernel_mul_mm_id_map1_f32")]] kernel kernel_mul_mm_id_map1_t kernel_mul_mm_id_map1<float>;
template<typename T, typename T4x4, typename simdgroup_T8x8, typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread T4x4 &)>
kernel void kernel_mul_mm_id(
constant ggml_metal_kargs_mul_mm_id & args,
device const char * src0, device const char * src0,
device const char * src1, device const char * src1,
threadgroup ushort2 * rowids, device const char * tpe,
device char * dst, device char * dst,
threadgroup char * shmem, threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]], uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]], ushort tiitg[[thread_index_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) { ushort sgitg[[simdgroup_index_in_threadgroup]]) {
threadgroup half * sa = (threadgroup half *)(shmem); threadgroup T * sa = (threadgroup T *)(shmem);
threadgroup float * sb = (threadgroup float *)(shmem + 4096); threadgroup half * sb = (threadgroup half *)(shmem + 4096);
const int r0 = tgpig.y; const int r0 = tgpig.y;
const int r1 = tgpig.x; const int r1 = tgpig.x;
const int im = tgpig.z;
if (r1*BLOCK_SIZE_N >= ne1) return; device const int32_t * tpe_i32 = (device const int32_t *) (tpe);
const int neh1 = tpe_i32[im];
if (r1*BLOCK_SIZE_N >= neh1) {
return;
}
// if this block is of 64x32 shape or smaller // if this block is of 64x32 shape or smaller
short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; const short n_rows = (args.neh0 - r0*BLOCK_SIZE_M < BLOCK_SIZE_M) ? (args.neh0 - r0*BLOCK_SIZE_M) : BLOCK_SIZE_M;
short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; const short n_cols = ( neh1 - r1*BLOCK_SIZE_N < BLOCK_SIZE_N) ? ( neh1 - r1*BLOCK_SIZE_N) : BLOCK_SIZE_N;
// a thread shouldn't load data outside of the matrix // a thread shouldn't load data outside of the matrix
short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; const short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; const short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
simdgroup_half8x8 ma[4]; simdgroup_T8x8 ma[4];
simdgroup_float8x8 mb[2]; simdgroup_half8x8 mb[2];
simdgroup_float8x8 mc[8]; simdgroup_float8x8 mc[8];
for (int i = 0; i < 8; i++){
for (short i = 0; i < 8; i++){
mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f); mc[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
} }
short il = (tiitg % THREAD_PER_ROW); short il = (tiitg % THREAD_PER_ROW);
ushort offset1 = il/nl; const int i12 = im%args.neh12;
const int i13 = im/args.neh12;
threadgroup const auto & id = rowids[r1 * BLOCK_SIZE_N + thread_col]; const uint64_t offset0 = (i12/args.r2)*args.nb02 + (i13/args.r3)*args.nb03;
const short offset1 = il/nl;
device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01) + offset1; device const block_q * x = (device const block_q *)(src0
device const float * y = (device const float *)(src1 + args.nb01*(r0*BLOCK_SIZE_M + thread_row) + offset0) + offset1;
+ nb12 * id[1]
+ nb11 * (id[0] % ne11)
+ nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { device const half * y = (device const half *)(src1
+ args.nbh13*i13
+ args.nbh12*i12
+ args.nbh11*(r1*BLOCK_SIZE_N + thread_col)
+ args.nbh10*(BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
for (int loop_k = 0; loop_k < args.ne00; loop_k += BLOCK_SIZE_K) {
// load data and store to threadgroup memory // load data and store to threadgroup memory
half4x4 temp_a; T4x4 temp_a;
dequantize_func(x, il, temp_a); dequantize_func(x, il, temp_a);
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
for (int i = 0; i < 16; i++) { #pragma unroll(16)
*(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ for (short i = 0; i < 16; i++) {
+ (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \ *(sa + SG_MAT_SIZE * ((tiitg/THREAD_PER_ROW/8) \
+ (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; + (tiitg%THREAD_PER_ROW)*16 + (i/8)*8) \
+ (tiitg/THREAD_PER_ROW)%8 + (i&7)*8) = temp_a[i/4][i%4];
} }
*(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); *(threadgroup half2x4 *)(sb + 32*8*(tiitg%THREAD_PER_COL) + 8*(tiitg/THREAD_PER_COL)) = *((device half2x4 *) y);
il = (il + 2 < nl) ? il + 2 : il % 2; il = (il + 2 < nl) ? il + 2 : il % 2;
x = (il < 2) ? x + (2+nl-1)/nl : x; x = (il < 2) ? x + (2 + nl - 1)/nl : x;
y += BLOCK_SIZE_K; y += BLOCK_SIZE_K;
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// load matrices from threadgroup memory and conduct outer products // load matrices from threadgroup memory and conduct outer products
threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); threadgroup const T * lsma = (sa + THREAD_MAT_M*SG_MAT_SIZE*(sgitg%2));
threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); threadgroup const half * lsmb = (sb + THREAD_MAT_N*SG_MAT_SIZE*(sgitg/2));
#pragma unroll(BLOCK_SIZE_K/8)
for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
#pragma unroll(4) #pragma unroll(4)
for (int i = 0; i < 4; i++) { for (short ik = 0; ik < BLOCK_SIZE_K/8; ik++) {
#pragma unroll(4)
for (short i = 0; i < 4; i++) {
simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i); simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i);
} }
simdgroup_barrier(mem_flags::mem_none); simdgroup_barrier(mem_flags::mem_none);
#pragma unroll(2) #pragma unroll(2)
for (int i = 0; i < 2; i++) { for (short i = 0; i < 2; i++) {
simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i); simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i);
} }
lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
#pragma unroll(8) #pragma unroll(8)
for (int i = 0; i < 8; i++){ for (short i = 0; i < 8; i++){
simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]); simdgroup_multiply_accumulate(mc[i], mb[i/4], ma[i%4], mc[i]);
} }
lsma += (BLOCK_SIZE_M/SG_MAT_ROW)*SG_MAT_SIZE;
lsmb += (BLOCK_SIZE_N/SG_MAT_ROW)*SG_MAT_SIZE;
} }
} }
{ if ((r0 + 1) * BLOCK_SIZE_M <= args.neh0 && (r1 + 1) * BLOCK_SIZE_N <= neh1) {
device float * C = (device float *) dst +
(BLOCK_SIZE_M * r0 + 32*(sgitg & 1)) + \
(BLOCK_SIZE_N * r1 + 16*(sgitg >> 1)) * args.neh0 + im*args.neh1*args.neh0;
for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], C + 8 * (i%4) + 8 * args.neh0 * (i/4), args.neh0);
}
} else {
// block is smaller than 64x32, we should avoid writing data outside of the matrix
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float * temp_str = ((threadgroup float *) shmem) \ threadgroup float * temp_str = ((threadgroup float *) shmem) \
+ 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; + 32*(sgitg&1) + (16*(sgitg >> 1))*BLOCK_SIZE_M;
for (int i = 0; i < 8; i++) { for (short i = 0; i < 8; i++) {
simdgroup_store(mc[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); simdgroup_store(mc[i], temp_str + 8*(i%4) + 8*BLOCK_SIZE_M*(i/4), BLOCK_SIZE_M);
} }
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
if (sgitg == 0) { if (sgitg == 0) {
for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
threadgroup const auto & jid = rowids[r1 * BLOCK_SIZE_N + j]; device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + (r1*BLOCK_SIZE_N + j)*args.neh0 + im*args.neh1*args.neh0;
int64_t joff = jid[0]*ne0 + jid[1]*ne0ne1;
device float * D = (device float *) dst + (r0*BLOCK_SIZE_M) + joff;
device float4 * D4 = (device float4 *) D; device float4 * D4 = (device float4 *) D;
threadgroup float * C = temp_str + (j*BLOCK_SIZE_M); threadgroup float * C = temp_str + (j*BLOCK_SIZE_M);
@ -6476,66 +6568,6 @@ void kernel_mul_mm_id_impl(
} }
} }
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
kernel void kernel_mul_mm_id(
constant ggml_metal_kargs_mul_mm_id & args,
device const char * src0s,
device const char * src1,
device char * dst,
device const char * ids,
threadgroup char * shmem [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
ushort tiitg[[thread_index_in_threadgroup]],
ushort sgitg[[simdgroup_index_in_threadgroup]]) {
const int32_t i02 = tgpig.z;
tgpig.z = 0;
device const char * src0 = src0s + i02*args.nb02;
// row indices
threadgroup ushort2 * rowids = (threadgroup ushort2 *)(shmem + 8192);
// TODO: parallelize this loop
int32_t _ne1 = 0;
for (ushort ii1 = 0; ii1 < args.nei1; ii1++) {
for (ushort ii0 = 0; ii0 < args.nei0; ii0++) {
int32_t id = ((device int32_t *) (ids + ii1*args.nbi1))[ii0];
if (id == i02) {
if (tiitg == 0) {
rowids[_ne1] = ushort2(ii0, ii1);
}
_ne1++;
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
kernel_mul_mm_id_impl<block_q, nl, dequantize_func>(
args.ne00,
args.ne02,
args.nb01,
args.nb02,
args.ne11,
args.ne12,
args.nb10,
args.nb11,
args.nb12,
args.ne0,
_ne1,
(int64_t)args.ne0*args.ne1,
src0,
src1,
rowids,
dst,
shmem,
tgpig,
tiitg,
sgitg);
}
#define QK_NL 16 #define QK_NL 16
// //
@ -6576,63 +6608,64 @@ template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_q_t kernel_get
// matrix-matrix multiplication // matrix-matrix multiplication
// //
typedef decltype(kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>) mat_mm_t; typedef decltype(kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>) mul_mm_t;
template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>; template [[host_name("kernel_mul_mm_f32_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>;
template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half4x4, 1, dequantize_f16>; template [[host_name("kernel_mul_mm_f16_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, half4x4, 1, dequantize_f16>;
#if defined(GGML_METAL_USE_BF16) #if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_mul_mm_bf16_f32")]] kernel mat_mm_t kernel_mul_mm<bfloat, bfloat4x4, simdgroup_bfloat8x8, bfloat4x4, 1, dequantize_bf16>; template [[host_name("kernel_mul_mm_bf16_f32")]] kernel mul_mm_t kernel_mul_mm<bfloat, bfloat4x4, simdgroup_bfloat8x8, bfloat4x4, 1, dequantize_bf16>;
#endif #endif
template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0>; template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1>; template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>; template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>; template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>; template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>; template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>; template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>; template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>;
template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K>; template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K>;
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K>; template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K>;
template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs>; template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs>; template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs>;
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs>; template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s>; template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s>;
template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s>; template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s>;
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s>; template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s>;
template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m>; template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m>;
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl>; template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl>;
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs>; template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mul_mm_t kernel_mul_mm<half, half4x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs>;
// //
// indirect matrix-matrix multiplication // indirect matrix-matrix multiplication
// //
typedef decltype(kernel_mul_mm_id<float4x4, 1, dequantize_f32>) mat_mm_id_t; typedef decltype(kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>) mul_mm_id;
template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>; template [[host_name("kernel_mul_mm_id_f32_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, float4x4, 1, dequantize_f32>;
template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>; template [[host_name("kernel_mul_mm_id_f16_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, half4x4, 1, dequantize_f16>;
#if defined(GGML_METAL_USE_BF16) #if defined(GGML_METAL_USE_BF16)
template [[host_name("kernel_mul_mm_id_bf16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<bfloat4x4, 1, dequantize_bf16>; template [[host_name("kernel_mul_mm_id_bf16_f16")]] kernel mul_mm_id kernel_mul_mm_id<bfloat, bfloat4x4, simdgroup_bfloat8x8, bfloat4x4, 1, dequantize_bf16>;
#endif #endif
template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>; template [[host_name("kernel_mul_mm_id_q4_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q4_0, 2, dequantize_q4_0>;
template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>; template [[host_name("kernel_mul_mm_id_q4_1_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q4_1, 2, dequantize_q4_1>;
template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>; template [[host_name("kernel_mul_mm_id_q5_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q5_0, 2, dequantize_q5_0>;
template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>; template [[host_name("kernel_mul_mm_id_q5_1_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q5_1, 2, dequantize_q5_1>;
template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>; template [[host_name("kernel_mul_mm_id_q8_0_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q8_0, 2, dequantize_q8_0>;
template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>; template [[host_name("kernel_mul_mm_id_q2_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q2_K, QK_NL, dequantize_q2_K>;
template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>; template [[host_name("kernel_mul_mm_id_q3_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q3_K, QK_NL, dequantize_q3_K>;
template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>; template [[host_name("kernel_mul_mm_id_q4_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q4_K, QK_NL, dequantize_q4_K>;
template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>; template [[host_name("kernel_mul_mm_id_q5_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q5_K, QK_NL, dequantize_q5_K>;
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>; template [[host_name("kernel_mul_mm_id_q6_K_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_q6_K, QK_NL, dequantize_q6_K>;
template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>; template [[host_name("kernel_mul_mm_id_iq2_xxs_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>; template [[host_name("kernel_mul_mm_id_iq2_xs_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq2_xs, QK_NL, dequantize_iq2_xs>;
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>; template [[host_name("kernel_mul_mm_id_iq3_xxs_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_s, QK_NL, dequantize_iq3_s>; template [[host_name("kernel_mul_mm_id_iq3_s_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq3_s, QK_NL, dequantize_iq3_s>;
template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_s, QK_NL, dequantize_iq2_s>; template [[host_name("kernel_mul_mm_id_iq2_s_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq2_s, QK_NL, dequantize_iq2_s>;
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>; template [[host_name("kernel_mul_mm_id_iq1_s_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq1_s, QK_NL, dequantize_iq1_s>;
template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>; template [[host_name("kernel_mul_mm_id_iq1_m_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq1_m, QK_NL, dequantize_iq1_m>;
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>; template [[host_name("kernel_mul_mm_id_iq4_nl_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq4_nl, 2, dequantize_iq4_nl>;
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>; template [[host_name("kernel_mul_mm_id_iq4_xs_f16")]] kernel mul_mm_id kernel_mul_mm_id<half, half4x4, simdgroup_half8x8, block_iq4_xs, QK_NL, dequantize_iq4_xs>;
// //
// matrix-vector multiplication // matrix-vector multiplication

View file

@ -2732,11 +2732,11 @@ void ggml_mul_mat_set_prec(
c = ggml_mul_mat_id(ctx, as, b, ids); c = ggml_mul_mat_id(ctx, as, b, ids);
as -> [cols, rows, n_expert] as -> [cols, rows, n_expert]
ids -> [n_experts_used, n_tokens] (i32)
b -> [cols, n_expert_used, n_tokens] b -> [cols, n_expert_used, n_tokens]
ids -> [n_expert_used, n_tokens] (i32)
c -> [rows, n_expert_used, n_tokens] c -> [rows, n_expert_used, n_tokens]
in b, n_experts_used can be broadcasted to match the n_expert_used of ids in b, n_expert_used can be broadcasted to match the n_expert_used of ids
c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
*/ */