ROCm Port (#1087)
* use hipblas based on cublas * Update Makefile for the Cuda kernels * Expand arch list and make it overrideable * Fix multi GPU on multiple amd architectures with rocblas_initialize() (#5) * add hipBLAS to README * new build arg LLAMA_CUDA_MMQ_Y * fix half2 decomposition * Add intrinsics polyfills for AMD * AMD assembly optimized __dp4a * Allow overriding CC_TURING * use "ROCm" instead of "CUDA" * ignore all build dirs * Add Dockerfiles * fix llama-bench * fix -nommq help for non CUDA/HIP --------- Co-authored-by: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com> Co-authored-by: ardfork <134447697+ardfork@users.noreply.github.com> Co-authored-by: funnbot <22226942+funnbot@users.noreply.github.com> Co-authored-by: Engininja2 <139037756+Engininja2@users.noreply.github.com> Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Co-authored-by: jammm <2500920+jammm@users.noreply.github.com> Co-authored-by: jdecourval <7315817+jdecourval@users.noreply.github.com>
This commit is contained in:
parent
3f460a2b72
commit
6bbc598a63
12 changed files with 335 additions and 59 deletions
29
README.md
29
README.md
|
@ -422,6 +422,35 @@ Building the program with BLAS support may lead to some performance improvements
|
|||
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
|
||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||
|
||||
- #### hipBLAS
|
||||
|
||||
This provide BLAS acceleation on HIP supported GPU like AMD GPU.
|
||||
Make sure to have ROCm installed.
|
||||
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
|
||||
Windows support is coming soon...
|
||||
|
||||
- Using `make`:
|
||||
```bash
|
||||
make LLAMA_HIPBLAS=1
|
||||
```
|
||||
- Using `CMake`:
|
||||
```bash
|
||||
mkdir build
|
||||
cd build
|
||||
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
|
||||
cmake --build .
|
||||
```
|
||||
|
||||
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
|
||||
If your GPU is not officialy supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3.
|
||||
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
|
||||
|
||||
| Option | Legal values | Default | Description |
|
||||
|-------------------------|------------------------|---------|-------------|
|
||||
| LLAMA_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
|
||||
| LLAMA_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
|
||||
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
|
||||
|
||||
- #### CLBlast
|
||||
|
||||
OpenCL acceleration is provided by the matrix multiplication kernels from the [CLBlast](https://github.com/CNugteren/CLBlast) project and custom kernels for ggml that can generate tokens on the GPU.
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue