Update Makefile var + add comment
This commit is contained in:
parent
a5c5ae2f54
commit
7211862c94
2 changed files with 10 additions and 4 deletions
|
@ -180,5 +180,11 @@ When running the larger models, make sure you have enough disk space to store al
|
|||
In general, it seems to work, but I think it fails for unicode character support. Hopefully, someone can help with that
|
||||
- I don't know yet how much the quantization affects the quality of the generated text
|
||||
- Probably the token sampling can be improved
|
||||
- x86 quantization support [not yet ready](https://github.com/ggerganov/ggml/pull/27). Basically, you want to run this on Apple Silicon. For now, on Linux and Windows you can use the F16 `ggml-model-f16.bin` model, but it will be much slower.
|
||||
- x86 quantization support [not yet ready](https://github.com/ggerganov/ggml/pull/27). Basically, you want to run this
|
||||
on Apple Silicon. For now, on Linux and Windows you can use the F16 `ggml-model-f16.bin` model, but it will be much
|
||||
slower.
|
||||
- The Accelerate framework is actually currently unused since I found that for tensors shapes typical for the Decoder,
|
||||
there is no benefit compared to the ARM_NEON intrinsics implementation. Of course, it's possible that I simlpy don't
|
||||
know how to utilize it properly. But in any case, you can even disable it with `LLAMA_NO_ACCELERATE=1 make` and the
|
||||
performance will be the same, since no BLAS calls are invoked by the current implementation
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue