ggml : move AMX to the CPU backend (#10570)
* ggml : move AMX to the CPU backend --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
b782e5c7d4
commit
7cc2d2c889
64 changed files with 514 additions and 801 deletions
196
ggml/src/ggml-cpu/amx/amx.cpp
Normal file
196
ggml/src/ggml-cpu/amx/amx.cpp
Normal file
|
@ -0,0 +1,196 @@
|
|||
#include "amx.h"
|
||||
#include "common.h"
|
||||
#include "mmq.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-impl.h"
|
||||
#include "ggml-cpu.h"
|
||||
|
||||
#if defined(__gnu_linux__)
|
||||
#include <sys/syscall.h>
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <memory>
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
|
||||
// AMX buffer interface
|
||||
static void ggml_backend_amx_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
free(buffer->context);
|
||||
}
|
||||
|
||||
static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *)(buffer->context);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
memset((char *)tensor->data + offset, value, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
if (qtype_has_amx_kernels(tensor->type)) {
|
||||
ggml_backend_amx_convert_weight(tensor, data, offset, size);
|
||||
} else {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
GGML_ASSERT(!qtype_has_amx_kernels(tensor->type));
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
if (qtype_has_amx_kernels(src->type)) {
|
||||
ggml_backend_amx_convert_weight(dst, src->data, 0, ggml_nbytes(dst));
|
||||
} else {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
memset(buffer->context, value, buffer->size);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_amx_buffer_interface = {
|
||||
/* .free_buffer = */ ggml_backend_amx_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_amx_buffer_get_base,
|
||||
/* .init_tensor = */ NULL, // no initialization required
|
||||
/* .memset_tensor = */ ggml_backend_amx_buffer_memset_tensor,
|
||||
/* .set_tensor = */ ggml_backend_amx_buffer_set_tensor,
|
||||
/* .get_tensor = */ ggml_backend_amx_buffer_get_tensor,
|
||||
/* .cpy_tensor = */ ggml_backend_amx_buffer_cpy_tensor,
|
||||
/* .clear = */ ggml_backend_amx_buffer_clear,
|
||||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "AMX";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * data = aligned_alloc(TENSOR_ALIGNMENT, size);
|
||||
if (data == NULL) {
|
||||
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return ggml_backend_buffer_init(buft, ggml_backend_amx_buffer_interface, data, size);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return TENSOR_ALIGNMENT;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_amx_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
|
||||
return ggml_backend_amx_get_alloc_size(tensor);
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_amx_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
#define ARCH_GET_XCOMP_PERM 0x1022
|
||||
#define ARCH_REQ_XCOMP_PERM 0x1023
|
||||
#define XFEATURE_XTILECFG 17
|
||||
#define XFEATURE_XTILEDATA 18
|
||||
|
||||
static bool ggml_amx_init() {
|
||||
#if defined(__gnu_linux__)
|
||||
if (syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA)) {
|
||||
fprintf(stderr, "AMX is not ready to be used!\n");
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#elif defined(_WIN32)
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_amx = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_amx_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_amx_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_amx_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
/* .get_alloc_size = */ ggml_backend_amx_buffer_type_get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_amx_buffer_type_is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
if (!ggml_amx_init()) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
return &ggml_backend_buffer_type_amx;
|
||||
}
|
||||
|
||||
bool ggml_backend_amx_buft_is_amx(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_amx_buffer_type_get_name;
|
||||
}
|
||||
|
||||
bool ggml_backend_amx_device_supports_op(const struct ggml_tensor * op) {
|
||||
// handle only 2d gemm for now
|
||||
auto is_contiguous_2d = [](const struct ggml_tensor * t) {
|
||||
return ggml_is_contiguous(t) && t->ne[3] == 1 && t->ne[2] == 1;
|
||||
};
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
return true;
|
||||
|
||||
case GGML_OP_MUL_MAT: {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
const enum ggml_type type = src0->type;
|
||||
const int64_t ne0 = op->ne[0];
|
||||
|
||||
// amx kernels enables for Q4_0, Q4_1, Q8_0, F16
|
||||
// Q4_K, Q5_K, Q6_K, IQ4_XS enabled for QK_K = 256
|
||||
bool has_amx_kernels = qtype_has_amx_kernels(type) || (type == GGML_TYPE_F16);
|
||||
|
||||
bool can_use_amx =
|
||||
is_contiguous_2d(src0) && // src0 must be contiguous
|
||||
is_contiguous_2d(src1) && // src1 must be contiguous
|
||||
src1->type == GGML_TYPE_F32 && // src1 must be float32
|
||||
has_amx_kernels && // with amx kernel impls
|
||||
ne0 % (TILE_N * 2) == 0; // out_features is 32x
|
||||
|
||||
return can_use_amx;
|
||||
}
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
#endif // defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
20
ggml/src/ggml-cpu/amx/amx.h
Normal file
20
ggml/src/ggml-cpu/amx/amx.h
Normal file
|
@ -0,0 +1,20 @@
|
|||
#include "ggml-backend.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#if defined(__AMX_INT8__) && defined(__AVX512VNNI__)
|
||||
|
||||
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
|
||||
bool ggml_backend_amx_buft_is_amx(ggml_backend_buffer_type_t buft);
|
||||
bool ggml_backend_amx_device_supports_op(const struct ggml_tensor * op);
|
||||
void ggml_backend_amx_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
size_t ggml_backend_amx_desired_wsize(const struct ggml_tensor * dst);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
101
ggml/src/ggml-cpu/amx/common.h
Normal file
101
ggml/src/ggml-cpu/amx/common.h
Normal file
|
@ -0,0 +1,101 @@
|
|||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-cpu-impl.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <type_traits>
|
||||
|
||||
#if defined(_OPENMP)
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
#define TILE_M 16
|
||||
#define TILE_N 16
|
||||
#define TILE_K 32
|
||||
#define VNNI_BLK 4
|
||||
|
||||
#define AMX_BLK_SIZE 32
|
||||
|
||||
#define TMM0 0
|
||||
#define TMM1 1
|
||||
#define TMM2 2
|
||||
#define TMM3 3
|
||||
#define TMM4 4
|
||||
#define TMM5 5
|
||||
#define TMM6 6
|
||||
#define TMM7 7
|
||||
|
||||
// parallel routines
|
||||
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
|
||||
inline T div_up(T x, T y) { return (x + y - 1) / y; }
|
||||
|
||||
template <typename T>
|
||||
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
|
||||
#if 0
|
||||
// onednn partition pattern
|
||||
T& n_my = n_end;
|
||||
if (nth <= 1 || n == 0) {
|
||||
n_start = 0;
|
||||
n_my = n;
|
||||
} else {
|
||||
T n1 = div_up(n, nth);
|
||||
T n2 = n1 - 1;
|
||||
T T1 = n - n2 * nth;
|
||||
n_my = ith < T1 ? n1 : n2;
|
||||
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
|
||||
}
|
||||
n_end += n_start;
|
||||
#else
|
||||
// pytorch aten partition pattern
|
||||
T n_my = div_up(n, nth);
|
||||
n_start = ith * n_my;
|
||||
n_end = std::min(n_start + n_my, n);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename func_t>
|
||||
inline void parallel_for(int nth, int n, const func_t& f) {
|
||||
#if defined(_OPENMP)
|
||||
#pragma omp parallel num_threads(nth)
|
||||
{
|
||||
//int nth = omp_get_num_threads();
|
||||
int ith = omp_get_thread_num();
|
||||
int tbegin, tend;
|
||||
balance211(n, nth, ith, tbegin, tend);
|
||||
f(tbegin, tend);
|
||||
}
|
||||
#else
|
||||
f(0, n);
|
||||
|
||||
GGML_UNUSED(nth);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename func_t>
|
||||
inline void parallel_for_ggml(const ggml_compute_params * params, int n, const func_t & f) {
|
||||
int tbegin, tend;
|
||||
balance211(n, params->nth, params->ith, tbegin, tend);
|
||||
f(tbegin, tend);
|
||||
ggml_barrier(params->threadpool); // TODO: might not always be needed
|
||||
}
|
||||
|
||||
// quantized types that have AMX support
|
||||
inline bool qtype_has_amx_kernels(const enum ggml_type type) {
|
||||
// TODO: fix padding for vnni format
|
||||
return (type == GGML_TYPE_Q4_0) ||
|
||||
(type == GGML_TYPE_Q4_1) ||
|
||||
(type == GGML_TYPE_Q8_0) ||
|
||||
(type == GGML_TYPE_Q4_K) ||
|
||||
(type == GGML_TYPE_Q5_K) ||
|
||||
(type == GGML_TYPE_Q6_K) ||
|
||||
(type == GGML_TYPE_IQ4_XS);
|
||||
}
|
||||
|
||||
// ggml backend context
|
||||
struct ggml_backend_amx_context {
|
||||
int n_threads = GGML_DEFAULT_N_THREADS;
|
||||
std::unique_ptr<char[]> work_data;
|
||||
size_t work_size = 0;
|
||||
};
|
2524
ggml/src/ggml-cpu/amx/mmq.cpp
Normal file
2524
ggml/src/ggml-cpu/amx/mmq.cpp
Normal file
File diff suppressed because it is too large
Load diff
16
ggml/src/ggml-cpu/amx/mmq.h
Normal file
16
ggml/src/ggml-cpu/amx/mmq.h
Normal file
|
@ -0,0 +1,16 @@
|
|||
#pragma once
|
||||
#include "common.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
size_t ggml_backend_amx_get_alloc_size(const struct ggml_tensor * tensor);
|
||||
|
||||
void ggml_backend_amx_convert_weight(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
|
||||
void ggml_backend_amx_mul_mat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue