mtmd : rename llava directory to mtmd (#13311)

* mv llava to mtmd

* change ref everywhere
This commit is contained in:
Xuan-Son Nguyen 2025-05-05 16:02:55 +02:00 committed by GitHub
parent 5215b91e93
commit 9b61acf060
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
37 changed files with 44 additions and 44 deletions

81
tools/mtmd/CMakeLists.txt Normal file
View file

@ -0,0 +1,81 @@
# llava (legacy)
add_library(llava OBJECT
llava.cpp
llava.h
clip.cpp
clip.h
)
target_link_libraries(llava PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(llava PUBLIC .)
target_include_directories(llava PUBLIC ../..)
target_include_directories(llava PUBLIC ../../common)
target_compile_features(llava PRIVATE cxx_std_17)
add_library(llava_static STATIC $<TARGET_OBJECTS:llava>)
if (BUILD_SHARED_LIBS)
set_target_properties(llava PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(llava PRIVATE LLAMA_SHARED LLAMA_BUILD)
add_library(llava_shared SHARED $<TARGET_OBJECTS:llava>)
target_link_libraries(llava_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS llava_shared LIBRARY)
endif()
# mtmd
add_library(mtmd OBJECT
mtmd.cpp
mtmd.h
clip.cpp
clip.h
clip-impl.h
)
target_link_libraries(mtmd PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
target_include_directories(mtmd PUBLIC .)
target_include_directories(mtmd PRIVATE ../..)
target_include_directories(mtmd PRIVATE ../../common) # for stb_image.h
target_compile_features(mtmd PRIVATE cxx_std_17)
add_library(mtmd_static STATIC $<TARGET_OBJECTS:mtmd>)
if (BUILD_SHARED_LIBS)
set_target_properties(mtmd PROPERTIES POSITION_INDEPENDENT_CODE ON)
target_compile_definitions(mtmd PRIVATE LLAMA_SHARED LLAMA_BUILD)
add_library(mtmd_shared SHARED $<TARGET_OBJECTS:mtmd>)
target_link_libraries(mtmd_shared PRIVATE ggml llama ${CMAKE_THREAD_LIBS_INIT})
install(TARGETS mtmd_shared LIBRARY)
endif()
if (NOT MSVC)
target_compile_options(llava PRIVATE -Wno-cast-qual) # stb_image.h
target_compile_options(mtmd PRIVATE -Wno-cast-qual) # stb_image.h
endif()
if(TARGET BUILD_INFO)
add_dependencies(llava BUILD_INFO)
add_dependencies(mtmd BUILD_INFO)
endif()
add_executable(llama-llava-cli deprecation-warning.cpp)
add_executable(llama-gemma3-cli deprecation-warning.cpp)
add_executable(llama-minicpmv-cli deprecation-warning.cpp)
add_executable(llama-qwen2vl-cli deprecation-warning.cpp)
set(TARGET llama-mtmd-cli)
add_executable(${TARGET} mtmd-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-mtmd-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common mtmd ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-llava-clip-quantize-cli)
add_executable(${TARGET} clip-quantize-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-clip-quantize-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View file

@ -0,0 +1,44 @@
# Quantizing CLIP Visual Projector
This is the tool for quantizing the CLIP visual projector model. Quantization reduces the precision of the model's weights, which can significantly decrease the model size and improve inference speed, often with minimal impact on performance.
## Usage
To quantize a CLIP visual projector model, use the following command:
```sh
./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf <type>
```
After the quantization, the visual projector can be used freely with the existing LLAVA cli (LLAVA, Qwen2VL, etc).
### Arguments
- `/path/to/ggml-model-f32.gguf`: The path to the input model file in FP32 or FP16 format.
- `/path/to/ggml-model-quantized.gguf`: The path where the quantized model will be saved.
- `<type>`: The quantization type to apply. This should be an integer corresponding to one of the quantization types defined in the `enum ggml_type`.
### Quantization Types
The following quantization types are supported, based on the `enum ggml_type` definition:
- `2` - `q4_0`: 4-bit quantization with a single scale value.
- `3` - `q4_1`: 4-bit quantization with a separate scale value for each block.
- `6` - `q5_0`: 5-bit quantization with a single scale value.
- `7` - `q5_1`: 5-bit quantization with a separate scale value for each block.
- `8` - `q8_0`: 8-bit quantization with a single scale value.
### Example
To quantize a model using the `q4_0` quantization type, you would run:
```sh
./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf 2
```
This command will generate a quantized model at `/path/to/ggml-model-quantized.gguf` using the `q4_0` quantization method.
## Notes
- Quantization can lead to a loss in model accuracy, depending on the chosen quantization type. It is recommended to evaluate the quantized model's performance on your specific task to ensure it meets your requirements.
- The quantized model will typically be smaller in size and faster to run, making it more suitable for deployment in resource-constrained environments.

92
tools/mtmd/README.md Normal file
View file

@ -0,0 +1,92 @@
# Multimodal Support in llama.cpp
This directory provides multimodal capabilities for `llama.cpp`. Initially intended as a showcase for running LLaVA models, its scope has expanded significantly over time to include various other vision-capable models. As a result, LLaVA is no longer the only multimodal architecture supported.
> [!IMPORTANT]
>
> Multimodal support can be viewed as a sub-project within `llama.cpp`. It is under **very heavy development**, and **breaking changes are expected**.
The naming and structure related to multimodal support have evolved, which might cause some confusion. Here's a brief timeline to clarify:
- [#3436](https://github.com/ggml-org/llama.cpp/pull/3436): Initial support for LLaVA 1.5 was added, introducing `llava.cpp` and `clip.cpp`. The `llava-cli` binary was created for model interaction.
- [#4954](https://github.com/ggml-org/llama.cpp/pull/4954): Support for MobileVLM was added, becoming the second vision model supported. This built upon the existing `llava.cpp`, `clip.cpp`, and `llava-cli` infrastructure.
- **Expansion & Fragmentation:** Many new models were subsequently added (e.g., [#7599](https://github.com/ggml-org/llama.cpp/pull/7599), [#10361](https://github.com/ggml-org/llama.cpp/pull/10361), [#12344](https://github.com/ggml-org/llama.cpp/pull/12344), and others). However, `llava-cli` lacked support for the increasingly complex chat templates required by these models. This led to the creation of model-specific binaries like `qwen2vl-cli`, `minicpmv-cli`, and `gemma3-cli`. While functional, this proliferation of command-line tools became confusing for users.
- [#12849](https://github.com/ggml-org/llama.cpp/pull/12849): `libmtmd` was introduced as a replacement for `llava.cpp`. Its goals include providing a single, unified command-line interface, improving the user/developer experience (UX/DX), and supporting both audio and image inputs.
- [#13012](https://github.com/ggml-org/llama.cpp/pull/13012): `mtmd-cli` was added, consolidating the various model-specific CLIs into a single tool powered by `libmtmd`.
## Pre-quantized models
These are ready-to-use models, most of them come with `Q4_K_M` quantization by default:
```sh
# Gemma 3
llama-mtmd-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-mtmd-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-mtmd-cli -hf ggml-org/gemma-3-27b-it-GGUF
# SmolVLM
llama-mtmd-cli -hf ggml-org/SmolVLM-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM-256M-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM-500M-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM2-2.2B-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM2-256M-Video-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/SmolVLM2-500M-Video-Instruct-GGUF
# Pixtral 12B
llama-mtmd-cli -hf ggml-org/pixtral-12b-GGUF
# Qwen 2 VL
llama-mtmd-cli -hf ggml-org/Qwen2-VL-2B-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/Qwen2-VL-7B-Instruct-GGUF
# Qwen 2.5 VL
llama-mtmd-cli -hf ggml-org/Qwen2.5-VL-3B-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/Qwen2.5-VL-7B-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/Qwen2.5-VL-32B-Instruct-GGUF
llama-mtmd-cli -hf ggml-org/Qwen2.5-VL-72B-Instruct-GGUF
# Mistral Small 3.1 24B (IQ2_M quantization)
llama-mtmd-cli -hf ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF --chat-template mistral-v7
```
## How it works and what is `mmproj`?
Multimodal support in `llama.cpp` works by encoding images into embeddings using a separate model component, and then feeding these embeddings into the language model.
This approach keeps the multimodal components distinct from the core `libllama` library. Separating these allows for faster, independent development cycles. While many modern vision models are based on Vision Transformers (ViTs), their specific pre-processing and projection steps can vary significantly. Integrating this diverse complexity directly into `libllama` is currently challenging.
Consequently, running a multimodal model typically requires two GGUF files:
1. The standard language model file.
2. A corresponding **multimodal projector (`mmproj`)** file, which handles the image encoding and projection.
## What is `libmtmd`?
As outlined in the history, `libmtmd` is the modern library designed to replace the original `llava.cpp` implementation for handling multimodal inputs.
Built upon `clip.cpp` (similar to `llava.cpp`), `libmtmd` offers several advantages:
- **Unified Interface:** Aims to consolidate interaction for various multimodal models.
- **Improved UX/DX:** Features a more intuitive API, inspired by the `Processor` class in the Hugging Face `transformers` library.
- **Flexibility:** Designed to support multiple input types (text, audio, images) while respecting the wide variety of chat templates used by different models.
## How to obtain `mmproj`
Multimodal projector (`mmproj`) files are specific to each model architecture.
For the following models, you can use `convert_hf_to_gguf.py`with `--mmproj` flag to get the `mmproj` file:
- [Gemma 3](https://huggingface.co/collections/google/gemma-3-release-67c6c6f89c4f76621268bb6d) - Note: 1B variant does not have vision support
- SmolVLM (from [HuggingFaceTB](https://huggingface.co/HuggingFaceTB))
- SmolVLM2 (from [HuggingFaceTB](https://huggingface.co/HuggingFaceTB))
- [Pixtral 12B](https://huggingface.co/mistral-community/pixtral-12b) - only works with `transformers`-compatible checkpoint
- Qwen 2 VL and Qwen 2.5 VL (from [Qwen](https://huggingface.co/Qwen))
- [Mistral Small 3.1 24B](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503)
For older models, please refer to the relevant guide for instructions on how to obtain or create them:
- [LLaVA](../../docs/multimodal/llava.md)
- [MobileVLM](../../docs/multimodal/MobileVLM.md)
- [GLM-Edge](../../docs/multimodal/glmedge.md)
- [MiniCPM-V 2.5](../../docs/multimodal/minicpmv2.5.md)
- [MiniCPM-V 2.6](../../docs/multimodal/minicpmv2.6.md)
- [MiniCPM-o 2.6](../../docs/multimodal/minicpmo2.6.md)
- [IBM Granite Vision](../../docs/multimodal/granitevision.md)
- [Google Gemma 3](../../docs/multimodal/gemma3.md)

53
tools/mtmd/android/adb_run.sh Executable file
View file

@ -0,0 +1,53 @@
#!/bin/bash
model_dir="/Users/cxt/model/llm/mobileVLM/MobileVLM-1.7B_processed"
projector_name="mmproj-model-f16.gguf"
llama_name="ggml-model-q4_k.gguf"
img_dir="/Users/cxt/model/llm"
img_name="demo.jpg"
prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
# img_name="cat.jpeg"
# prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
program_dir="build_64/bin"
binName="llama-mtmd-cli"
n_threads=4
deviceDir="/data/local/tmp"
saveDir="output"
if [ ! -d ${saveDir} ]; then
mkdir ${saveDir}
fi
function android_run() {
# # copy resource into device
# adb push ${model_dir}/${projector_name} ${deviceDir}/${projector_name}
# adb push ${model_dir}/${llama_name} ${deviceDir}/${llama_name}
adb push ${img_dir}/${img_name} ${deviceDir}/${img_name}
# copy program into device
adb push ${program_dir}/${binName} ${deviceDir}/${binName}
adb shell "chmod 0777 ${deviceDir}/${binName}"
# run
adb shell "echo cd ${deviceDir} ${deviceDir}/${binName} \
-m ${deviceDir}/${llama_name} \
--mmproj ${deviceDir}/${projector_name} \
-t ${n_threads} \
--image ${deviceDir}/${img_name} \
-p \"${prompt}\" \
> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt"
adb shell "cd ${deviceDir}; pwd; ${deviceDir}/${binName} \
-m ${deviceDir}/${llama_name} \
--mmproj ${deviceDir}/${projector_name} \
-t ${n_threads} \
--image ${deviceDir}/${img_name} \
-p \"${prompt}\" \
>> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt 2>&1"
adb pull ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt ${saveDir}
}
android_run
echo "android_run is Done!"

8
tools/mtmd/android/build_64.sh Executable file
View file

@ -0,0 +1,8 @@
#!/bin/bash
cmake ../../../../ \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DCMAKE_BUILD_TYPE=Release \
-DANDROID_ABI="arm64-v8a" \
-DANDROID_PLATFORM=android-23 $1
make -j4

359
tools/mtmd/clip-impl.h Normal file
View file

@ -0,0 +1,359 @@
#include "ggml.h"
#include "gguf.h"
#include "clip.h"
#include <climits>
#include <cstdarg>
#include <string>
#include <map>
#include <sstream>
#include <vector>
#include <memory>
// Internal header for clip.cpp
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
#define KEY_MINICPMV_VERSION "clip.minicpmv_version"
#define KEY_USE_GELU "clip.use_gelu"
#define KEY_USE_SILU "clip.use_silu"
#define KEY_N_EMBD "clip.vision.embedding_length"
#define KEY_N_FF "clip.vision.feed_forward_length"
#define KEY_N_BLOCK "clip.vision.block_count"
#define KEY_N_HEAD "clip.vision.attention.head_count"
#define KEY_LAYER_NORM_EPS "clip.vision.attention.layer_norm_epsilon"
#define KEY_PROJ_DIM "clip.vision.projection_dim"
#define KEY_IMAGE_SIZE "clip.vision.image_size"
#define KEY_PATCH_SIZE "clip.vision.patch_size"
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
#define KEY_USE_GLU_MLP "clip.use_glu_mlp" // for qwen2.5vl
#define KEY_USE_RMS_NORM "clip.use_rms_norm" // for qwen2.5vl
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
#define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
#define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
#define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
//
// tensor name constants
//
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
#define TN_ATTN_V "%s.blk.%d.attn_v.%s"
#define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
#define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
#define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
#define TN_LN_1 "%s.blk.%d.ln1.%s"
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
#define TN_IMAGE_NEWLINE "model.image_newline"
#define TN_MM_INP_NORM "mm.input_norm.weight"
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
#define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
#define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
#define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
// mimicpmv
#define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
#define TN_MINICPMV_QUERY "resampler.query"
#define TN_MINICPMV_PROJ "resampler.proj.weight"
#define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
#define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
#define TN_MINICPMV_LN "resampler.ln_%s.%s"
#define TN_GLM_ADAPER_CONV "adapter.conv.%s"
#define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
#define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
#define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
#define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
#define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
PROJECTOR_TYPE_LDP,
PROJECTOR_TYPE_LDPV2,
PROJECTOR_TYPE_MINICPMV,
PROJECTOR_TYPE_GLM_EDGE,
PROJECTOR_TYPE_QWEN2VL,
PROJECTOR_TYPE_GEMMA3,
PROJECTOR_TYPE_IDEFICS3,
PROJECTOR_TYPE_PIXTRAL,
PROJECTOR_TYPE_QWEN25VL,
PROJECTOR_TYPE_UNKNOWN,
};
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_MLP, "mlp" },
{ PROJECTOR_TYPE_LDP, "ldp" },
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
{ PROJECTOR_TYPE_MINICPMV, "resampler"},
{ PROJECTOR_TYPE_GLM_EDGE, "adapter"},
{ PROJECTOR_TYPE_QWEN2VL, "qwen2vl_merger"},
{ PROJECTOR_TYPE_QWEN25VL, "qwen2.5vl_merger"},
{ PROJECTOR_TYPE_GEMMA3, "gemma3"},
{ PROJECTOR_TYPE_IDEFICS3, "idefics3"},
{ PROJECTOR_TYPE_PIXTRAL, "pixtral"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
for (const auto & pair : PROJECTOR_TYPE_NAMES) {
if (pair.second == str) {
return pair.first;
}
}
return PROJECTOR_TYPE_UNKNOWN;
}
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
//
// logging
//
static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) user_data;
fputs(text, stderr);
fflush(stderr);
}
struct clip_logger_state {
ggml_log_level verbosity_thold;
ggml_log_callback log_callback;
void * log_callback_user_data;
};
extern struct clip_logger_state g_logger_state;
static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
if (format == NULL) {
return;
}
va_list args_copy;
va_copy(args_copy, args);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
} else {
char * buffer2 = (char *) calloc(len + 1, sizeof(char));
vsnprintf(buffer2, len + 1, format, args_copy);
buffer2[len] = 0;
g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
free(buffer2);
}
va_end(args_copy);
}
static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
va_list args;
va_start(args, format);
clip_log_internal_v(level, format, args);
va_end(args);
}
#define LOG_TMPL(level, ...) \
do { \
if ((level) >= g_logger_state.verbosity_thold) { \
clip_log_internal((level), __VA_ARGS__); \
} \
} while (0)
#define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
#define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
#define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
//
// cpp wrappers
//
// wrapper for clip_image_size
struct clip_image_size_deleter {
void operator()(clip_image_size * val) { clip_image_size_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
// wrapper for clip_image_u8
struct clip_image_u8_deleter {
void operator()(clip_image_u8 * val) { clip_image_u8_free(val); }
};
typedef std::unique_ptr<clip_image_u8, clip_image_u8_deleter> clip_image_u8_ptr;
// wrapper for clip_image_f32
struct clip_image_f32_deleter {
void operator()(clip_image_f32 * val) { clip_image_f32_free(val); }
};
typedef std::unique_ptr<clip_image_f32, clip_image_f32_deleter> clip_image_f32_ptr;
struct clip_image_u8_batch {
std::vector<clip_image_u8_ptr> entries;
};
struct clip_image_f32_batch {
std::vector<clip_image_f32_ptr> entries;
clip_image_f32_batch clone() const {
clip_image_f32_batch new_batch;
new_batch.entries.reserve(entries.size());
for (const auto & entry : entries) {
new_batch.entries.emplace_back(new clip_image_f32(*entry));
}
return new_batch;
}
};
//
// common utils
//
static std::string string_format(const char * fmt, ...) {
va_list ap;
va_list ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), buf.size());
}
static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
if (search.empty()) {
return;
}
std::string builder;
builder.reserve(s.length());
size_t pos = 0;
size_t last_pos = 0;
while ((pos = s.find(search, last_pos)) != std::string::npos) {
builder.append(s, last_pos, pos - last_pos);
builder.append(replace);
last_pos = pos + search.length();
}
builder.append(s, last_pos, std::string::npos);
s = std::move(builder);
}
// split string by a `std::string delim` instead of `char delim`
static std::vector<std::string> string_split_str(std::string s, const std::string & delimiter) {
std::vector<std::string> tokens;
size_t pos = 0;
std::string token;
while ((pos = s.find(delimiter)) != std::string::npos) {
token = s.substr(0, pos);
tokens.push_back(token);
s.erase(0, pos + delimiter.length());
}
tokens.push_back(s);
return tokens;
}
//
// gguf utils
//
static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
switch (type) {
case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
default: return string_format("unknown type %d", type);
}
}
static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
switch (type) {
case GGUF_TYPE_STRING:
return gguf_get_val_str(ctx_gguf, i);
case GGUF_TYPE_ARRAY:
{
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss;
ss << "[";
for (int j = 0; j < arr_n; j++) {
if (arr_type == GGUF_TYPE_STRING) {
std::string val = gguf_get_arr_str(ctx_gguf, i, j);
// escape quotes
string_replace_all(val, "\\", "\\\\");
string_replace_all(val, "\"", "\\\"");
ss << '"' << val << '"';
} else if (arr_type == GGUF_TYPE_ARRAY) {
ss << "???";
} else {
ss << gguf_data_to_str(arr_type, data, j);
}
if (j < arr_n - 1) {
ss << ", ";
}
}
ss << "]";
return ss.str();
}
default:
return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
}
}
//
// API used internally with mtmd
//
projector_type clip_get_projector_type(const struct clip_ctx * ctx);

View file

@ -0,0 +1,59 @@
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"
static void print_usage(int argc, char ** argv) {
(void) argc;
fprintf(stderr, "usage: %s /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf type\n", argv[0]);
fprintf(stderr, " type = 2 - q4_0\n");
fprintf(stderr, " type = 3 - q4_1\n");
fprintf(stderr, " type = 6 - q5_0\n");
fprintf(stderr, " type = 7 - q5_1\n");
fprintf(stderr, " type = 8 - q8_0\n");
}
int main(int argc, char ** argv) {
if (argc != 4) {
print_usage(argc, argv);
return 1;
}
const std::string fname_inp = argv[1];
const std::string fname_out = argv[2];
const int itype = atoi(argv[3]);
const int64_t t_main_start_us = ggml_time_us();
int64_t t_quantize_us = 0;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!clip_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
t_quantize_us = ggml_time_us() - t_start_us;
}
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us / 1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
}
return 0;
}

3618
tools/mtmd/clip.cpp Normal file

File diff suppressed because it is too large Load diff

135
tools/mtmd/clip.h Normal file
View file

@ -0,0 +1,135 @@
#ifndef CLIP_H
#define CLIP_H
#include "ggml.h"
#include <stddef.h>
#include <stdint.h>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define CLIP_API __declspec(dllexport)
# else
# define CLIP_API __declspec(dllimport)
# endif
# else
# define CLIP_API __attribute__ ((visibility ("default")))
# endif
#else
# define CLIP_API
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct clip_ctx;
struct clip_image_size {
int width;
int height;
};
struct clip_image_f32;
struct clip_image_u8_batch;
struct clip_image_f32_batch;
struct clip_context_params {
bool use_gpu;
enum ggml_log_level verbosity;
};
// deprecated, use clip_init
CLIP_API struct clip_ctx * clip_model_load(const char * fname, int verbosity);
CLIP_API struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params);
CLIP_API void clip_free(struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes(const struct clip_ctx * ctx);
CLIP_API size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h);
CLIP_API int32_t clip_get_image_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_patch_size (const struct clip_ctx * ctx);
CLIP_API int32_t clip_get_hidden_size(const struct clip_ctx * ctx);
// TODO: should be enum, not string
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
GGML_DEPRECATED(CLIP_API int clip_n_patches(const struct clip_ctx * ctx),
"use clip_n_output_tokens instead");
GGML_DEPRECATED(CLIP_API int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img),
"use clip_n_output_tokens instead");
CLIP_API int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img);
// for M-RoPE, this will be the number of token positions in X and Y directions
// for other models, X will be the total number of tokens and Y will be 1
CLIP_API int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img);
CLIP_API int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img);
// this should be equal to the embedding dimension of the text model
CLIP_API int clip_n_mmproj_embd(const struct clip_ctx * ctx);
CLIP_API int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip);
CLIP_API void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size);
CLIP_API struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip);
CLIP_API struct clip_image_size * clip_image_size_init(void);
CLIP_API struct clip_image_u8 * clip_image_u8_init (void);
CLIP_API struct clip_image_f32 * clip_image_f32_init(void);
CLIP_API struct clip_image_f32_batch * clip_image_f32_batch_init(void); // only used by libllava
// nx, ny are the output image dimensions
CLIP_API unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny);
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
// use for accessing underlay data of clip_image_f32_batch
CLIP_API size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch); // equivalent to batch->size()
CLIP_API size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->nx
CLIP_API size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->ny
CLIP_API struct clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx); // equivalent to batch[idx]->data
/**
* Build image from pixels decoded by other libraries instead of stb_image.h for better performance.
* The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes
*/
CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
/** interpret bytes as an image file with length bytes_length, and use the result to populate img */
CLIP_API bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img);
/** preprocess img and store the result in res_imgs, pad_to_square may be overridden to false depending on model configuration */
CLIP_API bool clip_image_preprocess(struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32_batch * res_imgs );
CLIP_API struct ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx);
CLIP_API bool clip_image_encode (struct clip_ctx * ctx, int n_threads, struct clip_image_f32 * img, float * vec);
CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct clip_image_f32_batch * imgs, float * vec);
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
#ifdef __cplusplus
}
#endif
#endif // CLIP_H

View file

@ -0,0 +1,412 @@
import argparse
import os
import json
import re
import torch
import numpy as np
from gguf import *
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel, SiglipVisionModel
TEXT = "clip.text"
VISION = "clip.vision"
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
if name in (
"logit_scale",
"text_model.embeddings.position_ids",
"vision_model.embeddings.position_ids",
):
return True
if has_llava and name in ["visual_projection.weight", "vision_model.post_layernorm.weight", "vision_model.post_layernorm.bias"]:
return True
if name.startswith("v") and not has_vision:
return True
if name.startswith("t") and not has_text:
return True
return False
def get_tensor_name(name: str) -> str:
# Standardize the transformers llava next keys for
# image newline / mm projector with the classes in haotian-liu LLaVA
if name == "image_newline":
return "model.image_newline"
if name.startswith("multi_modal_projector"):
name = name.replace("multi_modal_projector", "mm")
if "linear_1" in name:
name = name.replace("linear_1", "0")
if "linear_2" in name:
name = name.replace("linear_2", "2")
return name
if "projection" in name:
return name
if "mm_projector" in name:
name = name.replace("model.mm_projector", "mm")
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
return name
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument('--bigendian', action="store_true", default=False, help="Model is executed on big-endian machine")
ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
# Selectable visual encoders that are compatible with this script
encoder_group = ap.add_mutually_exclusive_group()
encoder_group.add_argument("--clip-model-is-openclip", action="store_true", required=False,
help="The clip model is from openclip (for ViT-SO400M type))")
encoder_group.add_argument("--clip-model-is-siglip", action="store_true", required=False,
help="the visual encoder is Siglip.")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
default_image_std = [0.26862954, 0.26130258, 0.27577711]
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
# with proper
args = ap.parse_args()
if args.text_only and args.vision_only:
print("--text-only and --image-only arguments cannot be specified at the same time.")
exit(1)
if args.use_f32:
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
if (
args.clip_model_is_vision or
not os.path.exists(dir_model + "/vocab.json") or
args.clip_model_is_openclip or
args.clip_model_is_siglip
):
vocab = None
tokens = None
else:
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
vocab = json.load(f)
tokens = [key for key in vocab]
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
config = json.load(f)
if args.clip_model_is_vision:
v_hparams = config
t_hparams = None
else:
v_hparams = config["vision_config"]
t_hparams = config["text_config"]
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if args.use_f32:
ftype = 0
if args.clip_model_is_siglip:
model = SiglipVisionModel.from_pretrained(dir_model)
processor = None
elif args.clip_model_is_vision or args.clip_model_is_openclip:
model = CLIPVisionModel.from_pretrained(dir_model)
processor = None
else:
model = CLIPModel.from_pretrained(dir_model)
processor = CLIPProcessor.from_pretrained(dir_model)
fname_middle = None
has_text_encoder = True
has_vision_encoder = True
has_llava_projector = False
if args.text_only:
fname_middle = "text-"
has_vision_encoder = False
elif args.llava_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_llava_projector = True
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
else:
fname_middle = ""
output_dir = args.output_dir if args.output_dir is not None else dir_model
os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
fout = GGUFWriter(path=fname_out, arch="clip", endianess=GGUFEndian.LITTLE if not args.bigendian else GGUFEndian.BIG)
fout.add_bool("clip.has_text_encoder", has_text_encoder)
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
fout.add_bool("clip.has_llava_projector", has_llava_projector)
fout.add_file_type(ftype)
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
fout.add_name(model_name)
if args.text_only:
fout.add_description("text-only CLIP model")
elif args.vision_only and not has_llava_projector:
fout.add_description("vision-only CLIP model")
elif has_llava_projector:
fout.add_description("image encoder for LLaVA")
# add projector type
fout.add_string("clip.projector_type", args.projector_type)
else:
fout.add_description("two-tower CLIP model")
if has_text_encoder:
assert t_hparams is not None
assert tokens is not None
if args.clip_model_is_siglip:
text_projection_dim = 0
else:
text_projection_dim = t_hparams.get("projection_dim", config["projection_dim"])
# text_model hparams
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
fout.add_uint32("clip.text.projection_dim", text_projection_dim)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
fout.add_token_list(tokens)
def get_non_negative_vision_feature_layers(v_hparams):
"""
Determine the vision feature layer(s) for the llava model, which are indices into the
hidden states of the visual encoder. Note that the hidden states array generally takes the
form:
[<emb input>, <output of enc block 0>, ... <output of enc block num_hidden_layers>]
so feature indices should be offset as n+1 to get the output of encoder block n.
We convert all vision feature layers to non-negative so that -1 can be used in
the model as an unset value. If no vision feature layer is found, we leave it unset.
"""
num_hidden_layers = v_hparams["num_hidden_layers"]
to_non_negative = lambda layer_idx: layer_idx if layer_idx >= 0 else num_hidden_layers + layer_idx + 1
feature_layers_key = None
# Key used for llava models in transformers
if "vision_feature_layer" in config:
feature_layers_key = "vision_feature_layer"
# Key used for llava models in the original format
elif "mm_vision_select_layer" in config:
feature_layers_key = "mm_vision_select_layer"
if feature_layers_key is not None:
feature_layers = config[feature_layers_key]
if isinstance(feature_layers, int):
feature_layers = [feature_layers]
return [to_non_negative(feature_layer) for feature_layer in feature_layers]
# Determine if we have explicitly specified vision feature layers in our config
feature_layers = get_non_negative_vision_feature_layers(v_hparams)
if has_vision_encoder:
# Siglip does not have a visual projector; set projection dim to 0
if args.clip_model_is_siglip:
visual_projection_dim = 0
else:
visual_projection_dim = v_hparams.get("projection_dim", config["projection_dim"])
# set vision_model hparams
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
fout.add_uint32("clip.vision.projection_dim", visual_projection_dim)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
if feature_layers:
block_count = max(feature_layers)
else:
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
# /**
# "image_grid_pinpoints": [
# [
# 336,
# 672
# ],
# [
# 672,
# 336
# ],
# [
# 672,
# 672
# ],
# [
# 1008,
# 336
# ],
# [
# 336,
# 1008
# ]
# ],
# Flattened:
# [
# 336, 672,
# 672, 336,
# 672, 672,
# 1008, 336,
# 336, 1008
# ]
# *
# */
if "image_grid_pinpoints" in v_hparams:
# flatten it
image_grid_pinpoints = []
for pinpoint in v_hparams["image_grid_pinpoints"]:
for p in pinpoint:
image_grid_pinpoints.append(p)
fout.add_array("clip.vision.image_grid_pinpoints", image_grid_pinpoints)
if "image_crop_resolution" in v_hparams:
fout.add_uint32("clip.vision.image_crop_resolution", v_hparams["image_crop_resolution"])
if "image_aspect_ratio" in v_hparams:
fout.add_string("clip.vision.image_aspect_ratio", v_hparams["image_aspect_ratio"])
if "image_split_resolution" in v_hparams:
fout.add_uint32("clip.vision.image_split_resolution", v_hparams["image_split_resolution"])
if "mm_patch_merge_type" in v_hparams:
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
if "mm_projector_type" in v_hparams:
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
if feature_layers:
fout.add_array("clip.vision.feature_layer", feature_layers)
if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std # pyright: ignore[reportAttributeAccessIssue]
else:
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std
fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std)
use_gelu = v_hparams["hidden_act"] == "gelu"
fout.add_bool("clip.use_gelu", use_gelu)
if has_llava_projector:
# By default, we drop the last layer for llava projector
# models unless we have explicitly set vision feature layers
if feature_layers is None:
model.vision_model.encoder.layers.pop(-1)
else:
model.vision_model.encoder.layers = model.vision_model.encoder.layers[:max(feature_layers)]
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)
# pw and dw conv ndim==4
if data.ndim == 2 or data.ndim == 4:
data = data.squeeze().numpy().astype(np.float16)
else:
data = data.squeeze().numpy().astype(np.float32)
fout.add_tensor(name, data)
print("Projector tensors added\n")
state_dict = model.state_dict()
for name, data in state_dict.items():
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
# we don't need this
print(f"skipping parameter: {name}")
continue
name = get_tensor_name(name)
data = data.squeeze().numpy()
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if n_dims == 4:
print(f"tensor {name} is always saved in f16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1:
if name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
fout.add_tensor(name, data)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print("Done. Output file: " + fname_out)

View file

@ -0,0 +1,22 @@
#include <cstdio>
#include <string>
int main(int argc, char** argv) {
std::string filename = "main";
if (argc >= 1) {
filename = argv[0];
}
// Get only the program name from the full path
size_t pos = filename.find_last_of("/\\");
if (pos != std::string::npos) {
filename = filename.substr(pos+1);
}
fprintf(stdout, "\n");
fprintf(stdout, "WARNING: The binary '%s' is deprecated.\n", filename.c_str());
fprintf(stdout, "Please use 'llama-mtmd-cli' instead.\n");
fprintf(stdout, "\n");
return EXIT_FAILURE;
}

View file

@ -0,0 +1,280 @@
import argparse
import os
import json
import re
import torch
import numpy as np
from gguf import *
TEXT = "clip.text"
VISION = "clip.vision"
from transformers import SiglipVisionModel, SiglipVisionConfig
def k(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
if name in (
"logit_scale",
"text_model.embeddings.position_ids",
"vision_model.embeddings.position_ids",
):
return True
if name in (
"vision_model.head.probe",
"vision_model.head.attention.in_proj_weight",
"vision_model.head.attention.in_proj_bias",
"vision_model.head.attention.out_proj.weight",
"vision_model.head.attention.out_proj.bias",
"vision_model.head.layernorm.weight",
"vision_model.head.layernorm.bias",
"vision_model.head.mlp.fc1.weight",
"vision_model.head.mlp.fc1.bias",
"vision_model.head.mlp.fc2.weight",
"vision_model.head.mlp.fc2.bias"
):
return True
if name.startswith("v") and not has_vision:
return True
if name.startswith("t") and not has_text:
return True
return False
def get_tensor_name(name: str) -> str:
if "projection" in name:
return name
if "mm_projector" in name:
name = name.replace("model.mm_projector", "mm")
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
return name
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
help="The clip model is from openclip (for ViT-SO400M type))")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2","adapter"], default="adapter")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
default_image_mean = [0.5, 0.5, 0.5]
default_image_std = [0.5, 0.5, 0.5]
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
# with proper
args = ap.parse_args()
if args.text_only and args.vision_only:
print("--text-only and --image-only arguments cannot be specified at the same time.")
exit(1)
if args.use_f32:
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
vocab = None
tokens = None
else:
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
vocab = json.load(f)
tokens = [key for key in vocab]
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
config = json.load(f)
if args.clip_model_is_vision:
v_hparams = config
t_hparams = None
else:
v_hparams = config["vision_config"]
t_hparams = None
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if args.use_f32:
ftype = 0
vision_config = SiglipVisionConfig(**v_hparams)
model = SiglipVisionModel(vision_config)
model.load_state_dict(torch.load(os.path.join(dir_model, "glm.clip")))
fname_middle = None
has_text_encoder = False
has_vision_encoder = True
has_glm_projector = True
if args.text_only:
fname_middle = "text-"
has_vision_encoder = False
elif args.llava_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_glm_projector = True
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
else:
fname_middle = ""
output_dir = args.output_dir if args.output_dir is not None else dir_model
os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
fout = GGUFWriter(path=fname_out, arch="clip")
fout.add_bool("clip.has_text_encoder", has_text_encoder)
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
fout.add_bool("clip.has_glm_projector", has_glm_projector)
fout.add_file_type(ftype)
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
fout.add_name(model_name)
if has_glm_projector:
fout.add_description("image encoder for glm4v")
fout.add_string("clip.projector_type", "adapter")
else:
fout.add_description("two-tower CLIP model")
if has_text_encoder:
assert t_hparams is not None
assert tokens is not None
# text_model hparams
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
fout.add_token_list(tokens)
if has_vision_encoder:
# vision_model hparams
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
fout.add_uint32("clip.vision.projection_dim", 0)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), v_hparams["num_hidden_layers"])
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std
fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std)
fout.add_bool("clip.use_gelu", True)
if has_glm_projector:
# model.vision_model.encoder.layers.pop(-1) # pyright: ignore[reportAttributeAccessIssue]
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)
# pw and dw conv ndim==4
if data.ndim == 2 or data.ndim == 4:
data = data.squeeze().numpy().astype(np.float16)
else:
data = data.squeeze().numpy().astype(np.float32)
if name.startswith("vision."):
name=name.replace("vision.","")
fout.add_tensor(name, data)
print(f"Projector {name} - {data.dtype} - shape = {data.shape}")
# print(f"Projector {name} tensors added\n")
state_dict = model.state_dict() # pyright: ignore[reportAttributeAccessIssue]
for name, data in state_dict.items():
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_glm_projector):
# we don't need this
print(f"skipping parameter: {name}")
continue
name = get_tensor_name(name)
data = data.squeeze().numpy()
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if n_dims == 4:
print(f"tensor {name} is always saved in f16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1:
if name[-7:] == ".weight" and n_dims == 2:
# print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
# print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
# print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
print(f"siglip {name} - {data.dtype} - shape = {data.shape}")
# print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
fout.add_tensor(name, data)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print("Done. Output file: " + fname_out)

View file

@ -0,0 +1,33 @@
import argparse
import os
import torch
from transformers import AutoModel
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", help="Path to GLM model")
args = ap.parse_args()
# find the model part that includes the the multimodal projector weights
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True)
checkpoint = model.state_dict()
# get a list of mm tensor names
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.adapter.")]
# store these tensors in a new dictionary and torch.save them
projector = {name: checkpoint[name].float() for name in mm_tensors}
torch.save(projector, f"{args.model}/glm.projector")
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vision.vit.model.vision_model.")]
if len(clip_tensors) > 0:
clip = {name.replace("vision.vit.model.", ""): checkpoint[name].float() for name in clip_tensors}
torch.save(clip, f"{args.model}/glm.clip")
# added tokens should be removed to be able to convert Mistral models
if os.path.exists(f"{args.model}/added_tokens.json"):
with open(f"{args.model}/added_tokens.json", "w") as f:
f.write("{}\n")
print("Done!")
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
print(f"Also, use {args.model}glm.projector to prepare a glm-encoder.gguf file.")

590
tools/mtmd/llava.cpp Normal file
View file

@ -0,0 +1,590 @@
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml-cpp.h"
#include <algorithm>
#include <cerrno>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <vector>
#include <memory>
#if defined(LLAVA_LOG_OFF)
# define LOG_INF(...)
# define LOG_WRN(...)
# define LOG_ERR(...)
# define LOG_DBG(...)
#else // defined(LLAVA_LOG_OFF)
# define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
# define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
# define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
# define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#endif // defined(LLAVA_LOG_OFF)
// RGB uint8 image
struct clip_image_u8 {
int nx;
int ny;
std::vector<uint8_t> buf;
};
// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
int nx;
int ny;
std::vector<float> buf;
};
struct clip_image_grid_shape {
int first;
int second;
};
// convenience cpp wrapper
struct clip_image_f32_batch_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;
struct clip_image_size_deleter {
void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
* @param original_size The original size of the image in the format (width, height).
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
* @return The best fit resolution in the format (width, height).
*/
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
int original_width = original_size.first;
int original_height = original_size.second;
std::pair<int, int> best_fit;
int max_effective_resolution = 0;
int min_wasted_resolution = std::numeric_limits<int>::max();
for (const auto& resolution : possible_resolutions) {
int width = resolution.first;
int height = resolution.second;
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
int downscaled_width = static_cast<int>(original_width * scale);
int downscaled_height = static_cast<int>(original_height * scale);
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
int wasted_resolution = (width * height) - effective_resolution;
// LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
max_effective_resolution = effective_resolution;
min_wasted_resolution = wasted_resolution;
best_fit = resolution;
}
}
return best_fit;
}
/**
* @brief Get the anyres image grid shape object
*
* @param image_size
* @param grid_pinpoints
* @param image_patch_size
* @return <int, int>
*/
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
/**
Conversion from gguf flat array to vector:
std::vector<std::pair<int, int>> possible_resolutions;
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
}
*/
auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
}
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out, clip_image_f32 * img_input) {
struct {
struct ggml_context * ctx;
} model;
const int32_t image_size = clip_get_image_size(ctx_clip);
const int32_t patch_size = clip_get_patch_size(ctx_clip);
int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
int num_patches_width = grid_shape.first; // grid 1-4
int num_patches_height = grid_shape.second; // grid 1-4
const size_t num_images = num_patches_width * num_patches_height + 1;
// TODO: size calculation is not calculated - it's only tens of MB
size_t ctx_size = 0;
{
ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
}
struct ggml_init_params params {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
};
// Python reference code for full unpad:
/*
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat((
image_feature,
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
), dim=-1)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
*/
// We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
// In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
// Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
// Once all images are processed to prepended the base_image_features without any changes.
// Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
/*
image_feature = image_feature.view(2, 2, 24, 24, 4096)
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.view(2, 24, 2, 24, 4096)
image_feature = image_feature.flatten(0, 3)
// Reshape to 4D tensor by merging the last two dimensions
image_feature = image_feature.view(2, 2, 24, 24*4096)
image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
image_feature = image_feature.view(-1, 4096)
*/
model.ctx = ggml_init(params);
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_output_tokens(ctx_clip, img_input), num_images - 1); // example: 4096 x 576 x 4
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
// fill it with the image embeddings, ignoring the base
for (size_t i = 1; i < num_images; i++) {
size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
}
struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
size_t size_ele = ggml_type_size(GGML_TYPE_F32);
struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
num_patches_per_side,
num_patches_width,
num_patches_height,
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
// ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
/**
At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
image_feature = torch.cat((
image_feature,
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
), dim=-1)
*
*/
// ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
// ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
ggml_build_forward_expand(gf, flatten);
ggml_backend_ptr backend { ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr) };
ggml_backend_graph_compute(backend.get(), gf);
struct ggml_tensor* result = ggml_graph_node(gf, -1);
memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
// append without newline tokens (default behavior in llava_arch when not using unpad ):
memcpy(image_embd_out + clip_n_output_tokens(ctx_clip, img_input) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
*n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_output_tokens(ctx_clip, img_input));
// Debug: Test single segments
// Current findings: sending base image, sending a segment embedding all works similar to python
// However, permuted embeddings do not work yet (stride issue?)
// memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
// memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
// *n_img_pos_out=576;
ggml_free(model.ctx);
return true;
}
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
int width = image->nx;
int height = image->ny;
int num_patches = (height / patch_size) * (width / patch_size);
clip_image_f32 * patch = clip_image_f32_init();
patch->nx = patch_size * num_patches;
patch->ny = patch_size;
patch->buf.resize(3 * patch->nx * patch->ny);
int patch_index = 0;
for (int i = 0; i < height; i += patch_size) {
for (int j = 0; j < width; j += patch_size) {
for (int pi = 0; pi < patch_size; ++pi) {
for (int pj = 0; pj < patch_size; ++pj) {
int input_index = ((i + pi) * width + (j + pj)) * 3;
int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
patch->buf[output_index] = image->buf[input_index];
patch->buf[output_index+1] = image->buf[input_index+1];
patch->buf[output_index+2] = image->buf[input_index+2];
}
}
patch_index++;
}
}
return patch;
}
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
LOG_ERR("%s: unable to preprocess image\n", __func__);
return false;
}
const int64_t t_img_enc_start_us = ggml_time_us();
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());
if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
std::vector<float *> image_embd_v;
image_embd_v.resize(n_imgs);
clip_image_size load_image_size;
for (size_t i = 0; i < n_imgs; i++) {
const int64_t t_img_enc_step_start_us = ggml_time_us();
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
int patch_size = 14;
load_image_size.width = nx;
load_image_size.height = ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
bool encoded = false;
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
if (clip_is_qwen2vl(ctx_clip)) {
encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
}
else {
encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
}
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
const int64_t t_img_enc_steop_batch_us = ggml_time_us();
LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
int n_img_pos_out = 0;
for (size_t i = 0; i < image_embd_v.size(); i++) {
int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
std::memcpy(
image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
image_embd_v[i],
clip_embd_nbytes_by_img(ctx_clip, nx, ny));
n_img_pos_out += clip_n_output_tokens(ctx_clip, img_res);
}
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
free(image_embd_v[i]);
}
image_embd_v.clear();
load_image_size.width = img->nx;
load_image_size.height = img->ny;
clip_add_load_image_size(ctx_clip, &load_image_size);
LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
}
else if (clip_is_glm(ctx_clip)){
struct clip_image_size * load_image_size = clip_image_size_init();
load_image_size->width = clip_image_f32_batch_nx(img_res_v.get(), 0);
load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
clip_add_load_image_size(ctx_clip, load_image_size);
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
*n_img_pos = (pos * pos + 2);
if (!encoded){
LOG_ERR("Unable to encode image \n");
return false;
}
}
else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
*n_img_pos = clip_n_output_tokens(ctx_clip, img_res);
bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
if (!encoded) {
LOG_ERR("Unable to encode image\n");
return false;
}
}
else {
// spatial_unpad llava-1.6 type embedding
// TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
std::vector<float *> image_embd_v;
image_embd_v.resize(n_imgs);
for (size_t i = 0; i < n_imgs; i++) {
clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
if (!encoded) {
LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
return false;
}
}
const int64_t t_img_enc_batch_us = ggml_time_us();
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip);
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
std::vector<std::pair<int, int>> grid_pinpoints;
for (size_t i = 0; i < num_gridpoints; i += 2) {
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
}
const int32_t image_size = clip_get_image_size(ctx_clip);
struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
int n_img_pos_out;
clip_image_f32 * img_input = clip_image_f32_get_img(img_res_v.get(), 0);
clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out, img_input);
*n_img_pos = n_img_pos_out;
for (size_t i = 0; i < image_embd_v.size(); i++) {
free(image_embd_v[i]);
}
image_embd_v.clear();
// debug image/segment/normalization content:
// clip_image_u8 * tmp = clip_image_u8_init();
// clip_image_convert_f32_to_u8(*image_feature, *tmp);
// clip_image_save_to_bmp(*tmp, "image_feature.bmp");
}
LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
const int64_t t_img_enc_end_us = ggml_time_us();
float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;
LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
return true;
}
bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
// make sure that the correct mmproj was used, i.e., compare apples to apples
int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
if (n_image_embd != n_llama_embd) {
LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
return false;
}
return true;
}
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
// Granite vision uses up to 10 patches + base patch
int num_max_patches = 11;
if (clip_is_minicpmv(ctx_clip)) {
num_max_patches = 10;
}
if (clip_is_glm(ctx_clip)) {
num_max_patches = 1;
}
float * image_embd;
if (clip_is_qwen2vl(ctx_clip)) {
// qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny));
} else {
image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
}
if (!image_embd) {
LOG_ERR("Unable to allocate memory for image embeddings\n");
return false;
}
int n_img_pos;
if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
LOG_ERR("%s: cannot encode image, aborting\n", __func__);
free(image_embd);
return false;
}
*image_embd_out = image_embd;
*n_img_pos_out = n_img_pos;
return true;
}
struct llava_embd_batch {
std::vector<llama_pos> pos;
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
llava_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_id_0[0] = seq_id;
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
for (int i = 0; i < n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
};
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
int n_eval = image_embed->n_image_pos - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
float * embd = image_embed->embed+i*n_embd;
llava_embd_batch llava_batch = llava_embd_batch(embd, n_eval, *n_past, 0);
if (llama_decode(ctx_llama, llava_batch.batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
}
return true;
}
struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
clip_image_u8 * img = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
clip_image_u8_free(img);
LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
return NULL;
}
float* image_embed = NULL;
int n_image_pos = 0;
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
if (!image_embed_result) {
clip_image_u8_free(img);
LOG_ERR("%s: couldn't embed the image\n", __func__);
return NULL;
}
clip_image_u8_free(img);
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
result->embed = image_embed;
result->n_image_pos = n_image_pos;
return result;
}
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
auto file = fopen(path, "rb");
if (file == NULL) {
LOG_ERR("%s: can't read file %s\n", __func__, path);
return false;
}
fseek(file, 0, SEEK_END);
auto fileSize = ftell(file);
fseek(file, 0, SEEK_SET);
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
if (buffer == NULL) {
LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
perror("Memory allocation error");
fclose(file);
return false;
}
errno = 0;
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
if (ferror(file)) {
LOG_ERR("read error: %s", strerror(errno));
free(buffer);
fclose(file);
return false;
}
if (ret != (size_t) fileSize) {
LOG_ERR("unexpectedly reached end of file");
free(buffer);
fclose(file);
return false;
}
fclose(file); // Close the file
*bytesOut = buffer;
*sizeOut = fileSize;
return true;
}
struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
unsigned char* image_bytes;
long image_bytes_length;
auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
if (!loaded) {
LOG_ERR("%s: failed to load %s\n", __func__, image_path);
return NULL;
}
llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
free(image_bytes);
return embed;
}
void llava_image_embed_free(struct llava_image_embed * embed) {
free(embed->embed);
free(embed);
}

49
tools/mtmd/llava.h Normal file
View file

@ -0,0 +1,49 @@
#ifndef LLAVA_H
#define LLAVA_H
#include "ggml.h"
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAVA_API __declspec(dllexport)
# else
# define LLAVA_API __declspec(dllimport)
# endif
# else
# define LLAVA_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAVA_API
#endif
#ifdef __cplusplus
extern "C" {
#endif
struct clip_ctx;
struct llava_image_embed {
float * embed;
int n_image_pos;
};
/** sanity check for clip <-> llava embed size match */
LLAVA_API bool llava_validate_embed_size(const struct llama_context * ctx_llama, const struct clip_ctx * ctx_clip);
LLAVA_API bool llava_image_embed_make_with_clip_img(struct clip_ctx * ctx_clip, int n_threads, const struct clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out);
/** build an image embed from image file bytes */
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length);
/** build an image embed from a path to an image filename */
LLAVA_API struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path);
/** free an embedding made with llava_image_embed_make_* */
LLAVA_API void llava_image_embed_free(struct llava_image_embed * embed);
/** write the image represented by embed into the llama context with batch size n_batch, starting at context pos n_past. on completion, n_past points to the next position in the context after the image embed. */
LLAVA_API bool llava_eval_image_embed(struct llama_context * ctx_llama, const struct llava_image_embed * embed, int n_batch, int * n_past);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -0,0 +1,38 @@
import argparse
import glob
import os
import torch
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
args = ap.parse_args()
# find the model part that includes the the multimodal projector weights
path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1]
checkpoint = torch.load(path)
# get a list of mm tensor names
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
# store these tensors in a new dictionary and torch.save them
projector = {name: checkpoint[name].float() for name in mm_tensors}
torch.save(projector, f"{args.model}/llava.projector")
# BakLLaVA models contain CLIP tensors in it
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")]
if len(clip_tensors) > 0:
clip = {name.replace("vision_tower.vision_tower.", ""): checkpoint[name].float() for name in clip_tensors}
torch.save(clip, f"{args.model}/llava.clip")
# added tokens should be removed to be able to convert Mistral models
if os.path.exists(f"{args.model}/added_tokens.json"):
with open(f"{args.model}/added_tokens.json", "w") as f:
f.write("{}\n")
print("Done!")
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")

View file

@ -0,0 +1,180 @@
import argparse
import glob
import os
import torch
from safetensors import safe_open
from safetensors.torch import save_file
from typing import Any, ContextManager, cast
# Function to determine if file is a SafeTensor file
def is_safetensor_file(file_path):
return file_path.endswith('.safetensors')
# Unified loading function
def load_model(file_path):
if is_safetensor_file(file_path):
tensors = {}
with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f:
for key in f.keys():
tensors[key] = f.get_tensor(key).clone()
# output shape
print(f"{key} : {tensors[key].shape}")
return tensors, 'safetensor'
else:
return torch.load(file_path, map_location=torch.device('cpu')), 'pytorch'
# Unified saving function
def save_model(model, file_path, file_type):
if file_type == 'safetensor':
# safe_save(model, file_path)
save_file(model, file_path)
else:
torch.save(model, file_path)
# Helpers to match weight names from specific components or
# determine if a saved shard contains that component
def is_vision_tower(weight_name):
return (
weight_name.startswith("model.vision_tower") or
weight_name.startswith("vit.") or
weight_name.startswith("vision_tower")
)
def is_newline(weight_name):
return (
weight_name.startswith("model.image_newline") or
weight_name.startswith("image_newline")
)
def is_mm_projector(weight_name):
return (
weight_name.startswith("model.mm_projector") or
weight_name.startswith("vision_proj.") or
weight_name.startswith("multi_modal_projector")
)
def newline_criteria(checkpoint):
return any(is_newline(k) for k in checkpoint.keys())
def proj_criteria(checkpoint):
return any(is_mm_projector(k) for k in checkpoint.keys())
# Adapted function to clean vision tower from checkpoint
def clean_vision_tower_from_checkpoint(checkpoint_path):
checkpoint, file_type = load_model(checkpoint_path)
# file_type = 'pytorch'
model_path = os.path.dirname(checkpoint_path)
print(f"Searching for vision tower tensors in {checkpoint_path}")
clip_tensors = [k for k, v in checkpoint.items() if is_vision_tower(k)]
if len(clip_tensors) > 0:
print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}")
# Adapted for file type
clip_path = os.path.join(model_path, "llava.clip")
if os.path.exists(clip_path):
print(f"Loading existing llava.clip from {clip_path}")
existing_clip, _ = load_model(clip_path)
else:
print(f"Creating new llava.clip at {clip_path}")
existing_clip = {}
# Update existing_clip with new tensors, avoid duplicates
for name in clip_tensors:
simple_name = name[name.index('vision_model.'):] if 'vision_model.' in name else name
print(f"Adding {simple_name} to llava.clip")
if simple_name not in existing_clip:
existing_clip[simple_name] = checkpoint[name]
# Save the updated clip tensors back to llava.clip
save_model(existing_clip, clip_path, 'pytorch')
# Remove the tensors from the original checkpoint
for name in clip_tensors:
del checkpoint[name]
checkpoint_path = checkpoint_path
return True
return False
def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector):
newline_checkpoint_path = None
projector_checkpoint_path = None
for path in checkpoint_paths:
checkpoint, _ = load_model(path)
if newline_criteria(checkpoint) and newline_checkpoint_path is None:
newline_checkpoint_path = path
if projector(checkpoint):
projector_checkpoint_path = path
return newline_checkpoint_path, projector_checkpoint_path
# Command-line interface setup
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True, help="Path to LLaVA v1.5+ model")
ap.add_argument("-C", "--clean-vision-tower", action="store_true", help="Remove any vision tower from the model files")
args = ap.parse_args()
if args.clean_vision_tower:
# Generalized to handle both PyTorch and SafeTensors models
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True)
# checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and path.startswith('pytorch')) or (path.endswith('.safetensors') and path.startswith('model'))]
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])]
for projector_checkpoint_path in checkpoint_paths:
print(f"Cleaning {projector_checkpoint_path}")
if not clean_vision_tower_from_checkpoint(projector_checkpoint_path):
print(f"No vision tower found in {projector_checkpoint_path}")
# we break once none is found, so far all models append them at the end
# break
print("Done! All vision tower tensors are removed from the model files and stored in llava.clip file.")
# Now we look for the projector in the last checkpoint
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True)
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])]
# last_checkpoint_path = checkpoint_paths[0]
# first_checkpoint_path = checkpoint_paths[-1]
newline_checkpoint_path, projector_checkpoint_path = find_relevant_checkpoints(checkpoint_paths, newline_criteria, proj_criteria)
print(f"Taking projector from {projector_checkpoint_path}")
first_mm_tensors = []
first_checkpoint = None
if newline_checkpoint_path is not None:
print(f"Taking newline from {newline_checkpoint_path}")
first_checkpoint, file_type = load_model(newline_checkpoint_path)
first_mm_tensors = [k for k, v in first_checkpoint.items() if is_newline(k)]
# Load the checkpoint
mm_tensors = []
last_checkpoint = None
if projector_checkpoint_path is not None:
last_checkpoint, file_type = load_model(projector_checkpoint_path)
mm_tensors = [k for k, v in last_checkpoint.items() if is_mm_projector(k)]
if len(mm_tensors) == 0:
if last_checkpoint is not None:
for k, v in last_checkpoint.items():
print(k)
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.")
print("No tensors found. Is this a LLaVA model?")
exit()
print(f"Found {len(mm_tensors)} tensors to extract.")
print(f"Found additional {len(first_mm_tensors)} tensors to extract.")
# projector = {name: checkpoint.[name].float() for name in mm_tensors}
projector = {}
for name in mm_tensors:
assert last_checkpoint is not None
projector[name] = last_checkpoint[name].float()
for name in first_mm_tensors:
assert first_checkpoint is not None
projector[name] = first_checkpoint[name].float()
if len(projector) > 0:
save_model(projector, f"{args.model}/llava.projector", 'pytorch')
print("Done!")
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")

View file

@ -0,0 +1,814 @@
# coding=utf-8
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Siglip model. """
# Copied from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit and add tgt_sizes
import os
import math
import warnings
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn.init import _calculate_fan_in_and_fan_out
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import (
logging,
)
from transformers.utils import logging
logger = logging.get_logger(__name__)
class SiglipVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
Example:
```python
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = SiglipVisionConfig()
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = SiglipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "siglip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=16,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"google/siglip-base-patch16-224",
# See all SigLIP models at https://huggingface.co/models?filter=siglip
]
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
if tensor.dtype in [torch.float16, torch.bfloat16]:
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
og_dtype = tensor.dtype
tensor = tensor.to(torch.float32)
tensor.erfinv_()
tensor = tensor.to(og_dtype)
else:
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
if tensor.dtype == torch.float16:
# The `clamp_` op is not (yet?) defined in float16+cpu
tensor = tensor.to(torch.float32)
tensor.clamp_(min=a, max=b)
tensor = tensor.to(torch.float16)
else:
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
):
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsquently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
denom = fan_in
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.num_patches_per_side = self.image_size // self.patch_size
self.num_patches = self.num_patches_per_side**2
self.num_positions = self.num_patches
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
class SiglipAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
class SiglipMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
class SiglipEncoderLayer(nn.Module):
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.self_attn = (
SiglipAttention(config)
)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
class SiglipPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SiglipVisionConfig
base_model_prefix = "siglip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SiglipVisionEmbeddings):
width = self.config.hidden_size
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, SiglipAttention):
nn.init.normal_(module.q_proj.weight)
nn.init.normal_(module.k_proj.weight)
nn.init.normal_(module.v_proj.weight)
nn.init.normal_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, SiglipMLP):
nn.init.normal_(module.fc1.weight)
nn.init.normal_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SIGLIP_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SiglipVisionConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
class SiglipEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`SiglipEncoderLayer`].
Args:
config: SiglipConfig
"""
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
class SiglipVisionTransformer(SiglipPreTrainedModel):
config_class = SiglipVisionConfig
main_input_name = "pixel_values"
_supports_flash_attn_2 = True
def __init__(self, config: SiglipVisionConfig):
super().__init__(config)
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(config)
self.encoder = SiglipEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embedding
import argparse
import json
import re
import numpy as np
from gguf import *
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
TEXT = "clip.text"
VISION = "clip.vision"
def add_key_str(raw_key: str, arch: str) -> str:
return raw_key.format(arch=arch)
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
if name in (
"logit_scale",
"text_model.embeddings.position_ids",
"vision_model.embeddings.position_ids",
):
return True
if has_minicpmv and name in ["visual_projection.weight"]:
return True
if name.startswith("v") and not has_vision:
return True
if name.startswith("t") and not has_text:
return True
return False
def get_tensor_name(name: str) -> str:
if "projection" in name:
return name
if "mm_projector" in name:
name = name.replace("model.mm_projector", "mm")
name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
return name
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = (
list(range(ord("!"), ord("~") + 1))
+ list(range(ord("¡"), ord("¬") + 1))
+ list(range(ord("®"), ord("ÿ") + 1))
)
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8 + n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
ap.add_argument("--text-only", action="store_true", required=False,
help="Save a text-only model. It can't be used to encode images")
ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
help="The clip model is from openclip (for ViT-SO400M type))")
ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
default_image_mean = [0.48145466, 0.4578275, 0.40821073]
default_image_std = [0.26862954, 0.26130258, 0.27577711]
ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
ap.add_argument('--minicpmv_version', type=int, help='minicpmv_version: MiniCPM-V-2 use 1; MiniCPM-V-2.5 use 2; MiniCPM-V-2.6 use 3; MiniCPM-o-2.6 use 4', default=2)
# with proper
args = ap.parse_args()
if args.text_only and args.vision_only:
print("--text-only and --image-only arguments cannot be specified at the same time.")
exit(1)
if args.use_f32:
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
vocab = None
tokens = None
else:
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
vocab = json.load(f)
tokens = [key for key in vocab]
# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if args.use_f32:
ftype = 0
# if args.clip_model_is_vision or args.clip_model_is_openclip:
# model = CLIPVisionModel.from_pretrained(dir_model)
# processor = None
# else:
# model = CLIPModel.from_pretrained(dir_model)
# processor = CLIPProcessor.from_pretrained(dir_model)
minicpmv_version = args.minicpmv_version
emb_dim = 4096
block_count = 26
if minicpmv_version == 1:
emb_dim = 2304
block_count = 26
elif minicpmv_version == 2:
emb_dim = 4096
block_count = 27
elif minicpmv_version == 3:
emb_dim = 3584
block_count = 27
elif minicpmv_version == 4:
emb_dim = 3584
block_count = 27
default_vision_config = {
"hidden_size": 1152,
"image_size": 980,
"intermediate_size": 4304,
"model_type": "idefics2",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
}
vision_config = Idefics2VisionConfig(**default_vision_config)
model = Idefics2VisionTransformer(vision_config)
if minicpmv_version == 3:
vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config)
elif minicpmv_version == 4:
vision_config = SiglipVisionConfig(**default_vision_config)
model = SiglipVisionTransformer(vision_config)
processor = None
# if model.attn_pool is not None:
# model.attn_pool = torch.nn.Identity()
# model.blocks = model.blocks[:-1]
model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
fname_middle = None
has_text_encoder = True
has_vision_encoder = True
has_minicpmv_projector = False
if args.text_only:
fname_middle = "text-"
has_vision_encoder = False
elif args.minicpmv_projector is not None:
fname_middle = "mmproj-"
has_text_encoder = False
has_minicpmv_projector = True
elif args.vision_only:
fname_middle = "vision-"
has_text_encoder = False
else:
fname_middle = ""
output_dir = args.output_dir if args.output_dir is not None else dir_model
os.makedirs(output_dir, exist_ok=True)
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
fout = GGUFWriter(path=fname_out, arch="clip")
fout.add_bool("clip.has_text_encoder", has_text_encoder)
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
fout.add_file_type(ftype)
if args.text_only:
fout.add_description("text-only CLIP model")
elif args.vision_only and not has_minicpmv_projector:
fout.add_description("vision-only CLIP model")
elif has_minicpmv_projector:
fout.add_description("image encoder for MiniCPM-V")
# add projector type
fout.add_string("clip.projector_type", "resampler")
fout.add_int32("clip.minicpmv_version", minicpmv_version)
else:
fout.add_description("two-tower CLIP model")
if has_vision_encoder:
# vision_model hparams
fout.add_uint32("clip.vision.image_size", 448)
fout.add_uint32("clip.vision.patch_size", 14)
fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152)
fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
fout.add_uint32("clip.vision.projection_dim", 0)
fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
else:
image_mean = args.image_mean if args.image_mean is not None else default_image_mean
image_std = args.image_std if args.image_std is not None else default_image_std
fout.add_array("clip.vision.image_mean", image_mean)
fout.add_array("clip.vision.image_std", image_std)
use_gelu = True
fout.add_bool("clip.use_gelu", use_gelu)
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
assert embed_dim % 2 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
"""
grid_size: int of the grid height and width
return:
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
"""
if isinstance(grid_size, int):
grid_h_size, grid_w_size = grid_size, grid_size
else:
grid_h_size, grid_w_size = grid_size[0], grid_size[1]
grid_h = np.arange(grid_h_size, dtype=np.float32)
grid_w = np.arange(grid_w_size, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
if cls_token:
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
return pos_embed
def _replace_name_resampler(s, v):
if re.match("resampler.pos_embed", s):
return {
s: v,
re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
}
if re.match("resampler.proj", s):
return {
re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(emb_dim, (70, 70))),
re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
}
if re.match("resampler.attn.in_proj_.*", s):
return {
re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
}
return {s: v}
if has_minicpmv_projector:
projector = torch.load(args.minicpmv_projector)
new_state_dict = {}
for k, v in projector.items():
kvs = _replace_name_resampler(k, v)
for nk, nv in kvs.items():
new_state_dict[nk] = nv
projector = new_state_dict
ftype_cur = 0
for name, data in projector.items():
name = get_tensor_name(name)
data = data.squeeze().numpy()
n_dims = len(data.shape)
if ftype == 1:
if name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
fout.add_tensor(name, data)
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
print("Projector tensors added\n")
def _replace_name(s, v):
s = "vision_model." + s
if re.match("vision_model.embeddings.position_embedding", s):
v = v.unsqueeze(0)
return {s: v}
return {s: v}
state_dict = model.state_dict()
new_state_dict = {}
for k, v in state_dict.items():
kvs = _replace_name(k, v)
for nk, nv in kvs.items():
new_state_dict[nk] = nv
state_dict = new_state_dict
for name, data in state_dict.items():
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
# we don't need this
print(f"skipping parameter: {name}")
continue
name = get_tensor_name(name)
data = data.squeeze().numpy()
n_dims = len(data.shape)
# ftype == 0 -> float32, ftype == 1 -> float16
ftype_cur = 0
if n_dims == 4:
print(f"tensor {name} is always saved in f16")
data = data.astype(np.float16)
ftype_cur = 1
elif ftype == 1:
if name[-7:] == ".weight" and n_dims == 2:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1
else:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
else:
if data.dtype != np.float32:
print(" Converting to float32")
data = data.astype(np.float32)
ftype_cur = 0
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
fout.add_tensor(name, data)
fout.write_header_to_file()
fout.write_kv_data_to_file()
fout.write_tensors_to_file()
fout.close()
print("Done. Output file: " + fname_out)

View file

@ -0,0 +1,45 @@
import argparse
import os
import torch
from transformers import AutoModel, AutoTokenizer
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", help="Path to MiniCPM-V model")
args = ap.parse_args()
# find the model part that includes the the multimodal projector weights
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True, torch_dtype=torch.bfloat16)
checkpoint = model.state_dict()
# get a list of mm tensor names
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")]
# store these tensors in a new dictionary and torch.save them
projector = {name: checkpoint[name].float() for name in mm_tensors}
torch.save(projector, f"{args.model}/minicpmv.projector")
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")]
if len(clip_tensors) > 0:
clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors}
torch.save(clip, f"{args.model}/minicpmv.clip")
# added tokens should be removed to be able to convert Mistral models
if os.path.exists(f"{args.model}/added_tokens.json"):
with open(f"{args.model}/added_tokens.json", "w") as f:
f.write("{}\n")
config = model.llm.config
config.auto_map = {
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
"AutoModel": "modeling_minicpm.MiniCPMModel",
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
}
model.llm.save_pretrained(f"{args.model}/model")
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True)
tok.save_pretrained(f"{args.model}/model")
print("Done!")
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.")

370
tools/mtmd/mtmd-cli.cpp Normal file
View file

@ -0,0 +1,370 @@
#include "arg.h"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "llama.h"
#include "ggml.h"
#include "console.h"
#include "chat.h"
#include "mtmd.h"
#include <vector>
#include <limits.h>
#include <cinttypes>
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#include <signal.h>
#include <unistd.h>
#elif defined (_WIN32)
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <windows.h>
#include <signal.h>
#endif
// volatile, because of signal being an interrupt
static volatile bool g_is_generating = false;
static volatile bool g_is_interrupted = false;
/**
* Please note that this is NOT a production-ready stuff.
* It is a playground for trying multimodal support in llama.cpp.
* For contributors: please keep this code simple and easy to understand.
*/
static void show_additional_info(int /*argc*/, char ** argv) {
LOG(
"Experimental CLI for multimodal\n\n"
"Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> -p <prompt>\n\n"
" -m and --mmproj are required\n"
" -hf user/repo can replace both -m and --mmproj in most cases\n"
" --image and -p are optional, if NOT provided, the CLI will run in chat mode\n"
" to disable using GPU for mmproj model, add --no-mmproj-offload\n",
argv[0]
);
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
if (g_is_generating) {
g_is_generating = false;
} else {
console::cleanup();
if (g_is_interrupted) {
_exit(1);
}
g_is_interrupted = true;
}
}
}
#endif
struct mtmd_cli_context {
mtmd::context_ptr ctx_vision;
common_init_result llama_init;
llama_model * model;
llama_context * lctx;
const llama_vocab * vocab;
llama_batch batch;
int n_batch;
mtmd::bitmaps bitmaps;
// note: we know that gemma3 template is "linear", meaning each turn is completely separated to another
// so here we don't need to keep track of chat history
common_chat_templates_ptr tmpls;
// support for legacy templates (models not having EOT token)
llama_tokens antiprompt_tokens;
int n_threads = 1;
llama_pos n_past = 0;
mtmd_cli_context(common_params & params) : llama_init(common_init_from_params(params)) {
model = llama_init.model.get();
lctx = llama_init.context.get();
vocab = llama_model_get_vocab(model);
n_threads = params.cpuparams.n_threads;
batch = llama_batch_init(params.n_batch, 0, 1);
n_batch = params.n_batch;
if (!model || !lctx) {
exit(1);
}
if (!llama_model_chat_template(model, nullptr) && params.chat_template.empty()) {
LOG_ERR("Model does not have chat template.\n");
LOG_ERR(" For old llava models, you may need to use '--chat-template vicuna'\n");
LOG_ERR(" For MobileVLM models, use '--chat-template deepseek'\n");
LOG_ERR(" For Mistral Small 3.1, use '--chat-template mistral-v7'\n");
exit(1);
}
tmpls = common_chat_templates_init(model, params.chat_template);
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(tmpls.get(), params.use_jinja).c_str());
init_vision_context(params);
// load antiprompt tokens for legacy templates
if (params.chat_template == "vicuna") {
antiprompt_tokens = common_tokenize(lctx, "ASSISTANT:", false, true);
} else if (params.chat_template == "deepseek") {
antiprompt_tokens = common_tokenize(lctx, "###", false, true);
}
}
void init_vision_context(common_params & params) {
const char * clip_path = params.mmproj.path.c_str();
mtmd_context_params mparams = mtmd_context_params_default();
mparams.use_gpu = params.mmproj_use_gpu;
mparams.print_timings = true;
mparams.n_threads = params.cpuparams.n_threads;
mparams.verbosity = params.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
ctx_vision.reset(mtmd_init_from_file(clip_path, model, mparams));
if (!ctx_vision.get()) {
LOG_ERR("Failed to load vision model from %s\n", clip_path);
exit(1);
}
}
bool check_antiprompt(const llama_tokens & generated_tokens) {
if (antiprompt_tokens.empty() || generated_tokens.size() < antiprompt_tokens.size()) {
return false;
}
return std::equal(
generated_tokens.end() - antiprompt_tokens.size(),
generated_tokens.end(),
antiprompt_tokens.begin()
);
}
bool load_image(const std::string & fname) {
mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_file(fname.c_str()));
if (!bmp.ptr) {
return false;
}
bitmaps.entries.push_back(std::move(bmp));
return true;
}
};
static int generate_response(mtmd_cli_context & ctx, common_sampler * smpl, int n_predict) {
llama_tokens generated_tokens;
for (int i = 0; i < n_predict; i++) {
if (i > n_predict || !g_is_generating || g_is_interrupted) {
LOG("\n");
break;
}
llama_token token_id = common_sampler_sample(smpl, ctx.lctx, -1);
generated_tokens.push_back(token_id);
common_sampler_accept(smpl, token_id, true);
if (llama_vocab_is_eog(ctx.vocab, token_id) || ctx.check_antiprompt(generated_tokens)) {
LOG("\n");
break; // end of generation
}
LOG("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
fflush(stdout);
if (g_is_interrupted) {
LOG("\n");
break;
}
// eval the token
common_batch_clear(ctx.batch);
common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
if (llama_decode(ctx.lctx, ctx.batch)) {
LOG_ERR("failed to decode token\n");
return 1;
}
}
return 0;
}
static int eval_message(mtmd_cli_context & ctx, common_chat_msg & msg, bool add_bos = false) {
common_chat_templates_inputs tmpl_inputs;
tmpl_inputs.messages = {msg};
tmpl_inputs.add_generation_prompt = true;
tmpl_inputs.use_jinja = false; // jinja is buggy here
auto formatted_chat = common_chat_templates_apply(ctx.tmpls.get(), tmpl_inputs);
LOG_DBG("formatted_chat.prompt: %s\n", formatted_chat.prompt.c_str());
mtmd_input_text text;
text.text = formatted_chat.prompt.c_str();
text.add_special = add_bos;
text.parse_special = true;
if (g_is_interrupted) return 0;
mtmd::input_chunks chunks(mtmd_input_chunks_init());
auto bitmaps_c_ptr = ctx.bitmaps.c_ptr();
int32_t res = mtmd_tokenize(ctx.ctx_vision.get(),
chunks.ptr.get(), // output
&text, // text
bitmaps_c_ptr.data(),
bitmaps_c_ptr.size());
if (res != 0) {
LOG_ERR("Unable to tokenize prompt, res = %d\n", res);
return 1;
}
ctx.bitmaps.entries.clear();
llama_pos new_n_past;
if (mtmd_helper_eval_chunks(ctx.ctx_vision.get(),
ctx.lctx, // lctx
chunks.ptr.get(), // chunks
ctx.n_past, // n_past
0, // seq_id
ctx.n_batch, // n_batch
true, // logits_last
&new_n_past)) {
LOG_ERR("Unable to eval prompt\n");
return 1;
}
ctx.n_past = new_n_past;
LOG("\n");
return 0;
}
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
params.sampling.temp = 0.2; // lower temp by default for better quality
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
return 1;
}
common_init();
if (params.mmproj.path.empty()) {
show_additional_info(argc, argv);
LOG_ERR("ERR: Missing --mmproj argument\n");
return 1;
}
mtmd_cli_context ctx(params);
LOG("%s: loading model: %s\n", __func__, params.model.path.c_str());
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
struct common_sampler * smpl = common_sampler_init(ctx.model, params.sampling);
int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict;
// Ctrl+C handling
{
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = sigint_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
#endif
}
if (g_is_interrupted) return 130;
if (is_single_turn) {
g_is_generating = true;
if (params.prompt.find("<__image__>") == std::string::npos) {
params.prompt += " <__image__>";
}
common_chat_msg msg;
msg.role = "user";
msg.content = params.prompt;
for (const auto & image : params.image) {
if (!ctx.load_image(image)) {
return 1; // error is already printed by libmtmd
}
}
if (eval_message(ctx, msg, true)) {
return 1;
}
if (!g_is_interrupted && generate_response(ctx, smpl, n_predict)) {
return 1;
}
} else {
LOG("\n Running in chat mode, available commands:");
LOG("\n /image <path> load an image");
LOG("\n /clear clear the chat history");
LOG("\n /quit or /exit exit the program");
LOG("\n");
bool is_first_msg = true;
std::string content;
while (!g_is_interrupted) {
g_is_generating = false;
LOG("\n> ");
console::set_display(console::user_input);
std::string line;
console::readline(line, false);
if (g_is_interrupted) break;
console::set_display(console::reset);
line = string_strip(line);
if (line.empty()) {
continue;
}
if (line == "/quit" || line == "/exit") {
break;
}
if (line == "/clear") {
ctx.n_past = 0;
llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
LOG("Chat history cleared\n\n");
continue;
}
g_is_generating = true;
if (line == "/image" || line.find("/image ") == 0) {
if (line.size() < 8) {
LOG_ERR("ERR: Missing image filename\n");
continue;
}
std::string image = line.substr(7);
if (ctx.load_image(image)) {
LOG("Image %s loaded\n", image.c_str());
content += "<__image__>";
}
// else, error is already printed by libmtmd
continue;
} else {
content += line;
}
common_chat_msg msg;
msg.role = "user";
msg.content = content;
int ret = eval_message(ctx, msg, is_first_msg);
if (ret) {
return 1;
}
if (g_is_interrupted) break;
if (generate_response(ctx, smpl, n_predict)) {
return 1;
}
content.clear();
is_first_msg = false;
}
}
if (g_is_interrupted) LOG("\nInterrupted by user\n");
LOG("\n\n");
llama_perf_context_print(ctx.lctx);
return g_is_interrupted ? 130 : 0;
}

937
tools/mtmd/mtmd.cpp Normal file
View file

@ -0,0 +1,937 @@
#include "clip.h"
#include "clip-impl.h"
#include "mtmd.h"
#include "llama.h"
#include <algorithm>
#include <cerrno>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <limits>
#include <vector>
// represents raw image data, layout is RGBRGBRGB...
// length of data must be nx * ny * 3
struct mtmd_bitmap {
uint32_t nx;
uint32_t ny;
std::vector<unsigned char> data;
std::string id; // optional user-defined id, for ex: can be set to image hash, useful for KV cache tracking
};
struct mtmd_image_tokens_deleter {
void operator()(mtmd_image_tokens * val); // forward declaration
};
using mtmd_image_tokens_ptr = std::unique_ptr<mtmd_image_tokens, mtmd_image_tokens_deleter>;
struct mtmd_input_chunk {
mtmd_input_chunk_type type;
std::vector<llama_token> tokens_text;
mtmd_image_tokens_ptr tokens_image;
};
struct mtmd_input_chunks {
std::vector<mtmd_input_chunk> entries;
};
// slice template, used by some llava-uhd models to correctly place the special tokens around image embeddings
// models not having it (llava-1.6) will process embeddings without any special tokens in-between
enum mtmd_slice_tmpl {
MTMD_SLICE_TMPL_NONE,
MTMD_SLICE_TMPL_MINICPMV_2_5,
MTMD_SLICE_TMPL_MINICPMV_2_6,
// TODO @ngxson : add support for idefics (SmolVLM)
};
mtmd_context_params mtmd_context_params_default() {
mtmd_context_params params;
params.use_gpu = true;
params.print_timings = true;
params.n_threads = 4;
params.verbosity = GGML_LOG_LEVEL_INFO;
params.image_marker = MTMD_DEFAULT_IMAGE_MARKER;
return params;
}
struct mtmd_context {
struct clip_ctx * ctx_clip;
const struct llama_model * text_model;
std::vector<float> image_embd_v; // image embedding vector
bool print_timings;
int n_threads;
std::string image_marker;
// for minicpmv, we need special tokens in-between slices
mtmd_slice_tmpl slice_tmpl = MTMD_SLICE_TMPL_NONE;
llama_token tok_ov_img_start = LLAMA_TOKEN_NULL; // overview image
llama_token tok_ov_img_end = LLAMA_TOKEN_NULL; // overview image
llama_token tok_slices_start = LLAMA_TOKEN_NULL; // start of all slices
llama_token tok_slices_end = LLAMA_TOKEN_NULL; // end of all slices
llama_token tok_sli_img_start = LLAMA_TOKEN_NULL; // single slice
llama_token tok_sli_img_end = LLAMA_TOKEN_NULL; // single slice
llama_token tok_row_end = LLAMA_TOKEN_NULL; // end of row
bool use_mrope = false; // for Qwen2VL, we need to use M-RoPE
// TODO @ngxson : add timings
mtmd_context(const char * mmproj_fname,
const llama_model * text_model,
const mtmd_context_params & ctx_params) :
text_model (text_model),
print_timings(ctx_params.print_timings),
n_threads (ctx_params.n_threads),
image_marker (ctx_params.image_marker)
{
clip_context_params ctx_clip_params;
ctx_clip_params.use_gpu = ctx_params.use_gpu;
ctx_clip_params.verbosity = ctx_params.verbosity;
ctx_clip = clip_init(mmproj_fname, ctx_clip_params);
if (!ctx_clip) {
throw std::runtime_error(string_format("Failed to load CLIP model from %s\n", mmproj_fname));
}
use_mrope = clip_is_qwen2vl(ctx_clip);
int minicpmv_version = clip_is_minicpmv(ctx_clip);
if (minicpmv_version == 2) {
// minicpmv 2.5 format:
// <image> (overview) </image><slice><image> (slice) </image><image> (slice) </image>\n ... </slice>
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_5;
tok_ov_img_start = lookup_token("<image>");
tok_ov_img_end = lookup_token("</image>");
tok_slices_start = lookup_token("<slice>");
tok_slices_end = lookup_token("</slice>");
tok_sli_img_start = tok_ov_img_start;
tok_sli_img_end = tok_ov_img_end;
tok_row_end = lookup_token("\n");
} else if (minicpmv_version == 3 || minicpmv_version == 4) {
// minicpmv 2.6 format:
// <image> (overview) </image><slice> (slice) </slice><slice> (slice) </slice>\n ...
slice_tmpl = MTMD_SLICE_TMPL_MINICPMV_2_6;
tok_ov_img_start = lookup_token("<image>");
tok_ov_img_end = lookup_token("</image>");
tok_sli_img_start = lookup_token("<slice>");
tok_sli_img_end = lookup_token("</slice>");
tok_row_end = lookup_token("\n");
} else if (minicpmv_version != 0) {
GGML_ASSERT(false && "unsupported minicpmv version");
}
}
~mtmd_context() {
clip_free(ctx_clip);
}
private:
llama_token lookup_token(const std::string & token_text) {
const llama_vocab * vocab = llama_model_get_vocab(text_model);
const int n_vocab = llama_vocab_n_tokens(vocab);
for (int i = 0; i < n_vocab; i++) {
if (token_to_piece(vocab, i, true) == token_text) {
return i;
}
}
return LLAMA_TOKEN_NULL;
}
std::string token_to_piece(const llama_vocab * vocab, llama_token token, bool special) {
std::string piece;
piece.resize(piece.capacity()); // using string internal cache, 15 bytes + '\n'
const int n_chars = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
if (n_chars < 0) {
piece.resize(-n_chars);
int check = llama_token_to_piece(vocab, token, &piece[0], piece.size(), 0, special);
GGML_ASSERT(check == -n_chars);
} else {
piece.resize(n_chars);
}
return piece;
}
};
struct mtmd_image_tokens_data {
clip_image_f32_batch batch_f32; // preprocessed image patches
};
struct mtmd_image_tokens {
uint32_t nx; // number of tokens in x direction
uint32_t ny; // number of tokens in y direction
bool use_mrope_pos = false; // use M-RoPE position counting (the whole image is 1 temporal position)
uint32_t n_tokens() const { return nx * ny; }
clip_image_f32_batch batch_f32; // preprocessed image patches
std::string id; // optional user-defined ID, useful for KV cache tracking
mtmd_image_tokens clone() {
return mtmd_image_tokens{
nx,
ny,
use_mrope_pos,
batch_f32.clone(),
id
};
}
};
mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const struct llama_model * text_model,
const struct mtmd_context_params ctx_params) {
try {
return new mtmd_context(mmproj_fname, text_model, ctx_params);
} catch (const std::exception & e) {
LOG_ERR("%s: error: %s\n", __func__, e.what());
return nullptr;
}
}
void mtmd_free(mtmd_context * ctx) {
if (ctx) {
delete ctx;
}
}
// copied from common_tokenize
static std::vector<llama_token> mtmd_tokenize_text_internal(
const struct llama_vocab * vocab,
const std::string & text,
bool add_special,
bool parse_special) {
// upper limit for the number of tokens
int n_tokens = text.length() + 2 * add_special;
std::vector<llama_token> result(n_tokens);
n_tokens = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
if (n_tokens < 0) {
result.resize(-n_tokens);
int check = llama_tokenize(vocab, text.data(), text.length(), result.data(), result.size(), add_special, parse_special);
GGML_ASSERT(check == -n_tokens);
} else {
result.resize(n_tokens);
}
return result;
}
int32_t mtmd_tokenize(mtmd_context * ctx,
mtmd_input_chunks * output,
const mtmd_input_text * text,
const mtmd_bitmap ** bitmaps,
size_t n_bitmaps) {
auto vocab = llama_model_get_vocab(ctx->text_model);
std::string prompt_modified(text->text);
std::string marker_modified(ctx->image_marker);
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
// a bit hacky here, but works for now
// for some models, we need to add prefix and suffix to the image embeddings
if (clip_is_gemma3(ctx->ctx_clip)) {
// gemma 3
// <start_of_image> ... (image embeddings) ... <end_of_image>
marker_modified = "<start_of_image>" + ctx->image_marker + "<end_of_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
} else if (proj_type == PROJECTOR_TYPE_IDEFICS3) {
// https://github.com/huggingface/transformers/blob/a42ba80fa520c784c8f11a973ca9034e5f859b79/src/transformers/models/idefics3/processing_idefics3.py#L192-L215
marker_modified = "<fake_token_around_image><global-img>" + ctx->image_marker + "<fake_token_around_image>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
} else if (proj_type == PROJECTOR_TYPE_PIXTRAL) {
// https://github.com/huggingface/transformers/blob/1cd110c6cb6a6237614130c470e9a902dbc1a4bd/docs/source/en/model_doc/pixtral.md
marker_modified = ctx->image_marker + "[IMG_END]";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
else if (proj_type == PROJECTOR_TYPE_QWEN2VL || proj_type == PROJECTOR_TYPE_QWEN25VL) {
// <|vision_start|> ... (image embeddings) ... <|vision_end|>
marker_modified = "<|vision_start|>" + ctx->image_marker + "<|vision_end|>";
string_replace_all(prompt_modified, ctx->image_marker, marker_modified);
}
// llava-1.5, llava-1.6, Yi-VL, Yi-34B, granite: don't need to add prefix and suffix
// for glm-edge, BOI and EOI token's embeddings are not present in the text model
std::vector<std::string> parts = string_split_str(prompt_modified, ctx->image_marker);
output->entries.clear();
output->entries.reserve(parts.size());
size_t i_img = 0;
// utility for adding raw tokens
auto add_text_chunk = [&output](std::vector<llama_token> && tokens) {
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens),
{},
};
output->entries.emplace_back(std::move(chunk));
};
// utility for splitting batch of multiple images into chunks of batch having single images
auto split_batch_to_chunk = [&ctx](clip_image_f32_batch && batch_f32, const std::string & id) {
std::vector<mtmd_input_chunk> chunks;
for (auto & entry : batch_f32.entries) {
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
image_tokens->nx = clip_n_output_tokens(ctx->ctx_clip, entry.get());
image_tokens->ny = 1;
image_tokens->batch_f32.entries.push_back(std::move(entry));
image_tokens->id = id;
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
std::move(image_tokens),
};
chunks.emplace_back(std::move(chunk));
}
return chunks;
};
for (const auto & part : parts) {
// printf("tokenizing part: %s\n", part.c_str());
bool add_bos = &parts.front() == &part;
auto tokens = mtmd_tokenize_text_internal(vocab, part, text->add_special && add_bos, text->parse_special);
if (tokens.empty()) {
continue;
}
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens),
{},
};
output->entries.emplace_back(std::move(chunk));
if (&parts.back() != &part) {
// add image token to middle of 2 parts
if (i_img >= n_bitmaps) {
LOG_ERR("%s: error: not enough images for %d parts\n", __func__, (int)parts.size());
return 1;
}
// convert mtmd_bitmap to clip_image_u8
clip_image_u8_ptr img_u8(clip_image_u8_init());
img_u8->nx = bitmaps[i_img]->nx;
img_u8->ny = bitmaps[i_img]->ny;
img_u8->buf.resize(bitmaps[i_img]->data.size());
std::memcpy(img_u8->buf.data(), bitmaps[i_img]->data.data(), img_u8->nx * img_u8->ny * 3);
clip_image_size img_u8_size{img_u8->nx, img_u8->ny};
// preprocess image
clip_image_f32_batch batch_f32;
bool ok = clip_image_preprocess(ctx->ctx_clip, img_u8.get(), &batch_f32);
if (!ok) {
LOG_ERR("Unable to preprocess image\n");
return 2;
}
if (ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_5 || ctx->slice_tmpl == MTMD_SLICE_TMPL_MINICPMV_2_6) {
// split batch into chunks of single images
auto chunks = split_batch_to_chunk(std::move(batch_f32), bitmaps[i_img]->id);
GGML_ASSERT(chunks.size() > 0);
// add overview image
add_text_chunk({ctx->tok_ov_img_start});
output->entries.emplace_back(std::move(chunks.front()));
chunks.erase(chunks.begin());
add_text_chunk({ctx->tok_ov_img_end});
// add slices
if (!chunks.empty()) {
clip_add_load_image_size(ctx->ctx_clip, &img_u8_size);
int n_col = clip_uhd_num_image_embeds_col(ctx->ctx_clip);
int n_row = (int)chunks.size() / n_col;
GGML_ASSERT(n_row * n_col == (int)chunks.size());
if (ctx->tok_slices_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_slices_start});
}
for (int y = 0; y < n_row; y++) {
for (int x = 0; x < n_col; x++) {
if (ctx->tok_sli_img_start != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_start});
}
output->entries.emplace_back(std::move(chunks[y * n_col + x]));
if (ctx->tok_sli_img_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_sli_img_end});
}
}
if (ctx->tok_row_end != LLAMA_TOKEN_NULL && y != n_row - 1) {
add_text_chunk({ctx->tok_row_end});
}
}
if (ctx->tok_slices_end != LLAMA_TOKEN_NULL) {
add_text_chunk({ctx->tok_slices_end});
}
}
} else {
size_t n_tokens = 0;
for (const auto & entry : batch_f32.entries) {
n_tokens += clip_n_output_tokens(ctx->ctx_clip, entry.get());
}
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
if (ctx->use_mrope) {
// for Qwen2VL, we need this information for M-RoPE decoding positions
image_tokens->nx = clip_n_output_tokens_x(ctx->ctx_clip, batch_f32.entries[0].get());
image_tokens->ny = clip_n_output_tokens_y(ctx->ctx_clip, batch_f32.entries[0].get());
image_tokens->use_mrope_pos = true;
} else {
// other models, we only need the total number of tokens
image_tokens->nx = n_tokens;
image_tokens->ny = 1;
}
image_tokens->batch_f32 = std::move(batch_f32);
image_tokens->id = bitmaps[i_img]->id; // optional
LOG_DBG("image_tokens->nx = %d\n", image_tokens->nx);
LOG_DBG("image_tokens->ny = %d\n", image_tokens->ny);
LOG_DBG("batch_f32 size = %d\n", (int)image_tokens->batch_f32.entries.size());
mtmd_input_chunk chunk{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
std::move(image_tokens),
};
output->entries.emplace_back(std::move(chunk));
}
i_img++; // move to next image
}
}
return 0;
}
static void mtmd_image_tokens_free(mtmd_image_tokens * image_tokens) {
if (image_tokens) {
delete image_tokens;
}
}
int32_t mtmd_encode(mtmd_context * ctx, const mtmd_image_tokens * image_tokens) {
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
ctx->image_embd_v.resize(image_tokens->n_tokens() * n_mmproj_embd);
bool ok = false;
// only effective for minicpmv and qwen2vl, other models will ignore load_image_size
{
clip_image_size slice_size{
image_tokens->batch_f32.entries[0]->nx,
image_tokens->batch_f32.entries[0]->ny};
clip_add_load_image_size(ctx->ctx_clip, &slice_size);
}
if (clip_is_llava(ctx->ctx_clip) || clip_is_minicpmv(ctx->ctx_clip) || clip_is_glm(ctx->ctx_clip)) {
// TODO @ngxson : llava does not support batched encoding ; this should be fixed inside clip_image_batch_encode()
const auto & entries = image_tokens->batch_f32.entries;
for (size_t i = 0; i < entries.size(); i++) {
int n_tokens_per_image = clip_n_output_tokens(ctx->ctx_clip, entries[i].get());
ok = clip_image_encode(
ctx->ctx_clip,
ctx->n_threads,
entries[i].get(),
ctx->image_embd_v.data() + i*n_mmproj_embd*n_tokens_per_image);
}
} else {
ok = clip_image_batch_encode(
ctx->ctx_clip,
ctx->n_threads,
&image_tokens->batch_f32,
ctx->image_embd_v.data());
}
return ok ? 0 : 1;
}
float * mtmd_get_output_embd(mtmd_context * ctx) {
return ctx->image_embd_v.data();
}
size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks) {
size_t n_tokens = 0;
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_tokens += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_tokens += mtmd_image_tokens_get_n_tokens(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_tokens;
}
llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks) {
llama_pos n_pos = 0;
for (size_t i = 0; i < mtmd_input_chunks_size(chunks); i++) {
auto chunk = mtmd_input_chunks_get(chunks, i);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens_text;
mtmd_input_chunk_get_tokens_text(chunk, &n_tokens_text);
n_pos += n_tokens_text;
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
auto tokens_image = mtmd_input_chunk_get_tokens_image(chunk);
n_pos += mtmd_image_tokens_get_n_pos(tokens_image);
} else {
GGML_ASSERT(false && "chunk type not supported");
}
}
return n_pos;
}
// helper struct to make working with embd batch easier
// note: this will be removed after llama_batch_ext refactoring
struct decode_embd_batch {
int n_pos_per_embd;
int n_mmproj_embd;
std::vector<llama_pos> pos;
std::vector<llama_pos> pos_view; // used by mrope
std::vector<int32_t> n_seq_id;
std::vector<llama_seq_id> seq_id_0;
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
decode_embd_batch(float * embd, int32_t n_tokens, int n_pos_per_embd, int n_mmproj_embd) : n_pos_per_embd(n_pos_per_embd), n_mmproj_embd(n_mmproj_embd) {
pos .resize(n_tokens * n_pos_per_embd);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
logits .resize(n_tokens);
seq_id_0.resize(1);
seq_ids [n_tokens] = nullptr;
batch = {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
/*logits =*/ logits.data(),
};
}
void set_position_normal(llama_pos pos_0, llama_seq_id seq_id) {
seq_id_0[0] = seq_id;
for (int i = 0; i < batch.n_tokens; i++) {
batch.pos [i] = pos_0 + i;
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
void set_position_mrope(llama_pos pos_0, int nx, int ny, llama_seq_id seq_id) {
GGML_ASSERT(n_pos_per_embd == 4);
seq_id_0[0] = seq_id;
for (int y = 0; y < ny; y++) {
for (int x = 0; x < nx; x++) {
int i = y * nx + x;
pos[i ] = pos_0;
pos[i + batch.n_tokens ] = pos_0 + y;
pos[i + batch.n_tokens * 2] = pos_0 + x;
pos[i + batch.n_tokens * 3] = 0; // last pos dim is unused
}
}
for (int i = 0; i < batch.n_tokens; i++) {
batch.n_seq_id[i] = 1;
batch.seq_id [i] = seq_id_0.data();
batch.logits [i] = false;
}
}
llama_batch get_view(int offset, int n_tokens) {
llama_pos * pos_ptr;
pos_view.clear();
pos_view.resize(n_tokens * n_pos_per_embd);
if (n_pos_per_embd > 1) {
// mrope
// for example, with layout of src: 1234...1234...1234...1234...
// offset 2 will give us dst: 34...34...34...34...
for (int i = 0; i < n_pos_per_embd; i++) {
auto src = pos.begin() + i * batch.n_tokens + offset;
pos_view.insert(pos_view.end(), src, src + n_tokens);
}
pos_ptr = pos_view.data();
} else {
// normal
pos_ptr = pos.data() + offset;
}
return {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ batch.embd + offset * n_mmproj_embd,
/*pos =*/ pos_ptr,
/*n_seq_id =*/ batch.n_seq_id + offset,
/*seq_id =*/ batch.seq_id + offset,
/*logits =*/ batch.logits + offset,
};
}
};
int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunk * chunk,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past) {
int32_t ret;
llama_batch text_batch = llama_batch_init(n_batch, 0, 1);
auto chunk_type = mtmd_input_chunk_get_type(chunk);
int n_mmproj_embd = clip_n_mmproj_embd(ctx->ctx_clip);
int n_pos_per_embd = mtmd_decode_use_mrope(ctx) ? 4 : 1;
if (chunk_type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
size_t n_tokens;
const auto tokens = mtmd_input_chunk_get_tokens_text(chunk, &n_tokens);
LOG_DBG("decoding text chunk, n_tokens = %zu\n", n_tokens);
size_t i = 0;
while (i < n_tokens) { // split into batches
text_batch.n_tokens = 0; // clear the batch
for (; i < n_tokens && text_batch.n_tokens < n_batch; i++) {
text_batch.n_tokens++;
text_batch.token [i] = tokens[i];
text_batch.pos [i] = n_past++;
text_batch.n_seq_id[i] = 1;
text_batch.seq_id [i][0] = seq_id;
text_batch.logits [i] = false;
}
bool is_last_token = (i == n_tokens);
if (logits_last && is_last_token) {
text_batch.logits[text_batch.n_tokens - 1] = true;
}
ret = llama_decode(lctx, text_batch);
if (ret != 0) {
LOG_ERR("failed to decode text\n");
llama_batch_free(text_batch);
return ret;
}
*new_n_past += text_batch.n_tokens;
}
} else if (chunk_type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
const auto image_tokens = mtmd_input_chunk_get_tokens_image(chunk);
int64_t t0 = ggml_time_ms();
if (ctx->print_timings) {
LOG_INF("encoding image or slice...\n");
}
ret = mtmd_encode(ctx, image_tokens);
if (ret != 0) {
LOG_ERR("failed to encode image\n");
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image/slice encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
}
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(image_tokens);
int32_t i_batch = 0;
int32_t n_img_batches = GGML_PAD(n_tokens, n_batch) / n_batch;
float * embd = mtmd_get_output_embd(ctx);
decode_embd_batch batch_embd(embd, n_tokens, n_pos_per_embd, n_mmproj_embd);
const int nx = mtmd_image_tokens_get_nx(image_tokens);
const int ny = mtmd_image_tokens_get_ny(image_tokens);
if (mtmd_decode_use_mrope(ctx)) {
batch_embd.set_position_mrope(n_past, nx, ny, seq_id);
} else {
batch_embd.set_position_normal(n_past, seq_id);
}
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, false);
// TODO @ngxson : need to make sure only one image is processed at a time, and n_ubatch must be enough to hold the image
}
while (i_batch < n_img_batches) { // split into batches
int pos_offset = i_batch*n_batch;
int n_tokens_batch = std::min(n_batch, n_tokens - pos_offset);
llama_batch batch_embd_view = batch_embd.get_view(pos_offset, n_tokens_batch);
LOG_INF("decoding image batch %d/%d, n_tokens_batch = %d\n", i_batch+1, n_img_batches, n_tokens_batch);
int64_t t1 = ggml_time_ms();
ret = llama_decode(lctx, batch_embd_view);
if (ret != 0) {
LOG_ERR("failed to decode image\n");
llama_set_causal_attn(lctx, true); // restore causal attn
llama_batch_free(text_batch);
return ret;
}
if (ctx->print_timings) {
LOG_INF("image decoded (batch %d/%d) in %" PRId64 " ms\n", i_batch+1, n_img_batches, ggml_time_ms() - t1);
}
i_batch++;
}
n_past += mtmd_image_tokens_get_n_pos(image_tokens);
*new_n_past = n_past;
if (mtmd_decode_use_non_causal(ctx)) {
llama_set_causal_attn(lctx, true);
}
} else {
GGML_ABORT("chunk type not supported");
}
return 0;
}
int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunks * chunks,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past) {
size_t n_chunks = mtmd_input_chunks_size(chunks);
if (n_chunks == 0) {
LOG_WRN("no chunks to eval\n");
return 0;
}
for (size_t i = 0; i < n_chunks; i++) {
bool chunk_logits_last = (i == n_chunks - 1) && logits_last;
auto chunk = mtmd_input_chunks_get(chunks, i);
int32_t res = mtmd_helper_eval_chunk_single(ctx, lctx, chunk, n_past, seq_id, n_batch, chunk_logits_last, &n_past);
if (res != 0) {
LOG_ERR("failed to eval chunk %zu\n", i);
return res;
}
*new_n_past = n_past;
}
return 0;
}
mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_bytes(buf, len, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image from buffer\n");
return nullptr;
}
uint32_t nx, ny;
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny);
return mtmd_bitmap_init(nx, ny, data);
}
mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname) {
clip_image_u8_ptr img_u8(clip_image_u8_init());
bool ok = clip_image_load_from_file(fname, img_u8.get());
if (!ok) {
LOG_ERR("Unable to load image %s\n", fname);
return nullptr;
}
uint32_t nx, ny;
unsigned char * data = clip_image_u8_get_data(img_u8.get(), &nx, &ny);
return mtmd_bitmap_init(nx, ny, data);
}
bool mtmd_decode_use_non_causal(mtmd_context * ctx) {
projector_type proj_type = clip_get_projector_type(ctx->ctx_clip);
if (proj_type == PROJECTOR_TYPE_GEMMA3) {
return true;
}
return false;
}
bool mtmd_decode_use_mrope(mtmd_context * ctx) {
return ctx->use_mrope;
}
void mtmd_image_tokens_deleter::operator()(mtmd_image_tokens * val) {
mtmd_image_tokens_free(val);
}
//
// public API functions
//
// mtmd_bitmap
mtmd_bitmap * mtmd_bitmap_init(uint32_t nx,
uint32_t ny,
const unsigned char * data) {
mtmd_bitmap * bitmap = new mtmd_bitmap;
bitmap->nx = nx;
bitmap->ny = ny;
size_t data_size = (size_t)nx * ny * 3;
bitmap->data.resize(data_size);
std::memcpy(bitmap->data.data(), data, data_size);
return bitmap;
}
uint32_t mtmd_bitmap_get_nx(const mtmd_bitmap * bitmap) {
return bitmap->nx;
}
uint32_t mtmd_bitmap_get_ny(const mtmd_bitmap * bitmap) {
return bitmap->ny;
}
const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap) {
return bitmap->data.data();
}
const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap) {
return bitmap->id.c_str();
}
void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id) {
if (id) {
bitmap->id = std::string(id);
} else {
bitmap->id.clear();
}
}
void mtmd_bitmap_free(mtmd_bitmap * bitmap) {
if (bitmap) {
delete bitmap;
}
}
// mtmd_input_chunks
mtmd_input_chunks * mtmd_input_chunks_init() {
return new mtmd_input_chunks;
}
size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks) {
return chunks->entries.size();
}
const mtmd_input_chunk * mtmd_input_chunks_get(const mtmd_input_chunks * chunks, size_t idx) {
if (idx >= chunks->entries.size()) {
return nullptr;
}
return &chunks->entries[idx];
}
void mtmd_input_chunks_free(mtmd_input_chunks * chunks) {
if (chunks) {
delete chunks;
}
}
// mtmd_input_chunk
enum mtmd_input_chunk_type mtmd_input_chunk_get_type(const mtmd_input_chunk * chunk) {
return chunk->type;
}
const llama_token * mtmd_input_chunk_get_tokens_text(const mtmd_input_chunk * chunk, size_t * n_tokens_output) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_TEXT) {
*n_tokens_output = chunk->tokens_text.size();
return chunk->tokens_text.data();
}
*n_tokens_output = 0;
return nullptr;
}
const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk) {
if (chunk->type == MTMD_INPUT_CHUNK_TYPE_IMAGE) {
return chunk->tokens_image.get();
}
return nullptr;
}
mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk) {
mtmd_input_chunk * copy = new mtmd_input_chunk{
chunk->type,
chunk->tokens_text,
mtmd_image_tokens_ptr(),
};
if (chunk->tokens_image) {
// copy the image tokens
copy->tokens_image = mtmd_image_tokens_ptr(new mtmd_image_tokens());
*copy->tokens_image = chunk->tokens_image->clone();
}
return copy;
}
void mtmd_input_chunk_free(mtmd_input_chunk * chunk) {
if (chunk) {
delete chunk;
}
}
// mtmd_image_tokens
size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens) {
return image_tokens->n_tokens();
}
size_t mtmd_image_tokens_get_nx(const mtmd_image_tokens * image_tokens) {
return image_tokens->nx;
}
size_t mtmd_image_tokens_get_ny(const mtmd_image_tokens * image_tokens) {
return image_tokens->ny;
}
const char * mtmd_image_tokens_get_id(const mtmd_image_tokens * image_tokens) {
return image_tokens->id.c_str();
}
llama_pos mtmd_image_tokens_get_n_pos(const mtmd_image_tokens * image_tokens) {
if (image_tokens->use_mrope_pos) {
return 1; // for M-RoPE, the whole image is 1 in temporal dimension
}
return image_tokens->n_tokens();
}
// test function
mtmd_input_chunks * mtmd_test_create_input_chunks() {
mtmd_input_chunks * chunks = mtmd_input_chunks_init();
if (!chunks) {
return nullptr;
}
// create a text chunk
std::vector<llama_token> tokens_text = { 1, 2, 3, 4, 5 };
mtmd_input_chunk chunk_text{
MTMD_INPUT_CHUNK_TYPE_TEXT,
std::move(tokens_text),
{},
};
chunks->entries.emplace_back(std::move(chunk_text));
// create an image chunk
mtmd_image_tokens_ptr image_tokens(new mtmd_image_tokens);
image_tokens->nx = 4;
image_tokens->ny = 4;
image_tokens->batch_f32.entries.resize(16);
image_tokens->id = "image_1";
mtmd_input_chunk chunk_image{
MTMD_INPUT_CHUNK_TYPE_IMAGE,
{},
std::move(image_tokens),
};
chunks->entries.emplace_back(std::move(chunk_image));
return chunks;
}

318
tools/mtmd/mtmd.h Normal file
View file

@ -0,0 +1,318 @@
#ifndef MTMD_H
#define MTMD_H
#include "ggml.h"
#include "llama.h"
#include "clip.h"
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
#include <vector>
#include <cinttypes>
#include <memory>
#endif
/**
* libmtmd: A library for multimodal support in llama.cpp.
*
* WARNING: This API is experimental and subject to many BREAKING CHANGES.
* Issues related to API usage may receive lower priority support.
*
* For the usage, see an example in mtmd-cli.cpp
*/
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define MTMD_API __declspec(dllexport)
# else
# define MTMD_API __declspec(dllimport)
# endif
# else
# define MTMD_API __attribute__ ((visibility ("default")))
# endif
#else
# define MTMD_API
#endif
#define MTMD_DEFAULT_IMAGE_MARKER "<__image__>"
#ifdef __cplusplus
extern "C" {
#endif
enum mtmd_input_chunk_type {
MTMD_INPUT_CHUNK_TYPE_TEXT,
MTMD_INPUT_CHUNK_TYPE_IMAGE,
};
// opaque types
struct mtmd_context;
struct mtmd_bitmap;
struct mtmd_image_tokens;
struct mtmd_input_chunk;
struct mtmd_input_chunks;
struct mtmd_input_text {
const char * text;
bool add_special;
bool parse_special;
};
//
// C API
//
typedef struct mtmd_context mtmd_context;
typedef struct mtmd_bitmap mtmd_bitmap;
typedef struct mtmd_image_tokens mtmd_image_tokens;
typedef struct mtmd_input_chunk mtmd_input_chunk;
typedef struct mtmd_input_chunks mtmd_input_chunks;
typedef struct mtmd_input_text mtmd_input_text;
struct mtmd_context_params {
bool use_gpu;
bool print_timings;
int n_threads;
enum ggml_log_level verbosity;
const char * image_marker;
};
MTMD_API struct mtmd_context_params mtmd_context_params_default(void);
// initialize the mtmd context
// return nullptr on failure
MTMD_API mtmd_context * mtmd_init_from_file(const char * mmproj_fname,
const struct llama_model * text_model,
const struct mtmd_context_params ctx_params);
MTMD_API void mtmd_free(mtmd_context * ctx);
// whether we need to set non-causal mask before llama_decode
MTMD_API bool mtmd_decode_use_non_causal(mtmd_context * ctx);
// whether the current model use M-RoPE for llama_decode
MTMD_API bool mtmd_decode_use_mrope(mtmd_context * ctx);
// mtmd_bitmap
//
// length of data must be nx * ny * 3
// the data is in RGBRGBRGB... format
MTMD_API mtmd_bitmap * mtmd_bitmap_init (uint32_t nx,
uint32_t ny,
const unsigned char * data);
MTMD_API uint32_t mtmd_bitmap_get_nx (const mtmd_bitmap * bitmap);
MTMD_API uint32_t mtmd_bitmap_get_ny (const mtmd_bitmap * bitmap);
MTMD_API const unsigned char * mtmd_bitmap_get_data(const mtmd_bitmap * bitmap);
MTMD_API void mtmd_bitmap_free (mtmd_bitmap * bitmap);
// bitmap ID is optional, but useful for KV cache tracking
// these getters/setters are dedicated functions, so you can for example calculate the hash of the image based on mtmd_bitmap_get_data()
MTMD_API const char * mtmd_bitmap_get_id(const mtmd_bitmap * bitmap);
MTMD_API void mtmd_bitmap_set_id(mtmd_bitmap * bitmap, const char * id);
// mtmd_input_chunks
//
// this is simply a list of mtmd_input_chunk
// the elements can only be populated via mtmd_tokenize()
MTMD_API mtmd_input_chunks * mtmd_input_chunks_init(void);
MTMD_API size_t mtmd_input_chunks_size(const mtmd_input_chunks * chunks);
MTMD_API const mtmd_input_chunk * mtmd_input_chunks_get (const mtmd_input_chunks * chunks, size_t idx);
MTMD_API void mtmd_input_chunks_free(mtmd_input_chunks * chunks);
// mtmd_input_chunk
//
// the instance will be constructed via mtmd_tokenize()
// it will be freed along with mtmd_input_chunks
MTMD_API enum mtmd_input_chunk_type mtmd_input_chunk_get_type (const mtmd_input_chunk * chunk);
MTMD_API const llama_token * mtmd_input_chunk_get_tokens_text (const mtmd_input_chunk * chunk, size_t * n_tokens_output);
MTMD_API const mtmd_image_tokens * mtmd_input_chunk_get_tokens_image(const mtmd_input_chunk * chunk);
// in case you want to use custom logic to handle the chunk (i.e. KV cache management)
// you can move the chunk ownership to your own code by copying it
// remember to free the chunk when you are done with it
MTMD_API mtmd_input_chunk * mtmd_input_chunk_copy(const mtmd_input_chunk * chunk);
MTMD_API void mtmd_input_chunk_free(mtmd_input_chunk * chunk);
// mtmd_image_tokens
//
// the instance will be constructed via mtmd_tokenize()
// it will be freed along with mtmd_input_chunk
MTMD_API size_t mtmd_image_tokens_get_n_tokens(const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_nx (const mtmd_image_tokens * image_tokens);
MTMD_API size_t mtmd_image_tokens_get_ny (const mtmd_image_tokens * image_tokens);
MTMD_API const char * mtmd_image_tokens_get_id (const mtmd_image_tokens * image_tokens);
// number of temporal positions (always 1 for M-RoPE, n_tokens otherwise)
MTMD_API llama_pos mtmd_image_tokens_get_n_pos (const mtmd_image_tokens * image_tokens);
// tokenize an input text prompt and an image
// the prompt must have the input image marker (default: "<__image__>") in it
// the marker will be replaced with the image tokens
// for example:
// "here is an image: <__image__>\ndescribe it in detail."
// this will gives 3 chunks:
// 1. "here is an image: <start_of_image>"
// 2. (image tokens)
// 3. "<end_of_image>\ndescribe it in detail."
// number of bitmaps must be equal to the number of image markers in the prompt
// this function is thread-safe (shared ctx)
// return values:
// 0 on success
// 1 on number of images not matching the number of markers
// 2 on image preprocessing error
MTMD_API int32_t mtmd_tokenize(mtmd_context * ctx,
mtmd_input_chunks * output,
const mtmd_input_text * text,
const mtmd_bitmap ** bitmaps,
size_t n_bitmaps);
// returns 0 on success
MTMD_API int32_t mtmd_encode(mtmd_context * ctx,
const mtmd_image_tokens * image_tokens);
// get output embeddings from the last encode pass
MTMD_API float * mtmd_get_output_embd(mtmd_context * ctx);
/////////////////////////////////////////
//
// Helper functions (can be implemented based on other functions)
//
// Please note that these helpers are not guaranteed to be stable.
// BREAKING CHANGES are expected.
//
// helper function to construct a mtmd_bitmap from a file
// returns nullptr on failure
// this function is thread-safe
MTMD_API mtmd_bitmap * mtmd_helper_bitmap_init_from_file(const char * fname);
// helper function to construct a mtmd_bitmap from a buffer containing a file
// the file content must be an image in format supported by stb_image (jpg, png, bmp, gif, etc.)
// returns nullptr on failure
// this function is thread-safe
MTMD_API mtmd_bitmap * mtmd_helper_bitmap_init_from_buf(const unsigned char * buf, size_t len);
// helper to count the total number of tokens from a list of chunks, useful to keep track of KV cache
MTMD_API size_t mtmd_helper_get_n_tokens(const mtmd_input_chunks * chunks);
// helper to count the total position of tokens from a list of chunks, useful to keep track of n_past
// normally, n_pos is equal to n_tokens, but for M-RoPE it is different
MTMD_API llama_pos mtmd_helper_get_n_pos(const mtmd_input_chunks * chunks);
// helper function that automatically:
// 1. run llama_decode() on text chunks
// 2. run mtmd_encode() on image chunks, then mtmd_get_output_embd() and then llama_decode()
// if any of the mtmd_encode() or llama_decode() calls return non-zero, stop and forward the error
// otherwise, returns 0 on success
// this function is NOT thread-safe
MTMD_API int32_t mtmd_helper_eval_chunks(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunks * chunks,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past);
// works like mtmd_helper_eval_chunks(), but only for a single chunk
// this function is NOT thread-safe
MTMD_API int32_t mtmd_helper_eval_chunk_single(mtmd_context * ctx,
struct llama_context * lctx,
const mtmd_input_chunk * chunk,
llama_pos n_past,
llama_seq_id seq_id,
int32_t n_batch,
bool logits_last,
llama_pos * new_n_past);
/////////////////////////////////////////
// test function, to be used in test-mtmd-c-api.c
MTMD_API mtmd_input_chunks * mtmd_test_create_input_chunks(void);
#ifdef __cplusplus
} // extern "C"
#endif
//
// C++ wrappers
//
#ifdef __cplusplus
namespace mtmd {
struct mtmd_context_deleter {
void operator()(mtmd_context * val) { mtmd_free(val); }
};
using context_ptr = std::unique_ptr<mtmd_context, mtmd_context_deleter>;
struct mtmd_bitmap_deleter {
void operator()(mtmd_bitmap * val) { mtmd_bitmap_free(val); }
};
using bitmap_ptr = std::unique_ptr<mtmd_bitmap, mtmd_bitmap_deleter>;
struct mtmd_input_chunks_deleter {
void operator()(mtmd_input_chunks * val) { mtmd_input_chunks_free(val); }
};
using input_chunks_ptr = std::unique_ptr<mtmd_input_chunks, mtmd_input_chunks_deleter>;
struct mtmd_input_chunk_deleter {
void operator()(mtmd_input_chunk * val) { mtmd_input_chunk_free(val); }
};
using input_chunk_ptr = std::unique_ptr<mtmd_input_chunk, mtmd_input_chunk_deleter>;
struct bitmap {
bitmap_ptr ptr;
bitmap() : ptr(nullptr) {}
bitmap(mtmd_bitmap * bitmap) : ptr(bitmap) {}
bitmap(bitmap && other) noexcept : ptr(std::move(other.ptr)) {}
bitmap(uint32_t nx, uint32_t ny, const unsigned char * data) {
ptr.reset(mtmd_bitmap_init(nx, ny, data));
}
~bitmap() = default;
uint32_t nx() { return mtmd_bitmap_get_nx(ptr.get()); }
uint32_t ny() { return mtmd_bitmap_get_ny(ptr.get()); }
const unsigned char * data() { return mtmd_bitmap_get_data(ptr.get()); }
std::string id() { return mtmd_bitmap_get_id(ptr.get()); }
void set_id(const char * id) { mtmd_bitmap_set_id(ptr.get(), id); }
};
struct bitmaps {
std::vector<bitmap> entries;
~bitmaps() = default;
// return list of pointers to mtmd_bitmap
// example:
// auto bitmaps_c_ptr = bitmaps.c_ptr();
// int32_t res = mtmd_tokenize(... bitmaps_c_ptr.data(), bitmaps_c_ptr.size());
std::vector<const mtmd_bitmap *> c_ptr() {
std::vector<const mtmd_bitmap *> res(entries.size());
for (size_t i = 0; i < entries.size(); i++) {
res[i] = entries[i].ptr.get();
}
return res;
}
};
struct input_chunks {
input_chunks_ptr ptr;
input_chunks() = default;
input_chunks(mtmd_input_chunks * chunks) : ptr(chunks) {}
~input_chunks() = default;
size_t size() { return mtmd_input_chunks_size(ptr.get()); }
const mtmd_input_chunk * operator[](size_t idx) {
return mtmd_input_chunks_get(ptr.get(), idx);
}
};
} // namespace mtmd
#endif
#endif

636
tools/mtmd/qwen2vl-test.cpp Normal file
View file

@ -0,0 +1,636 @@
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef NDEBUG
#include "ggml-alloc.h"
#include "ggml-backend.h"
#endif
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <vector>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <limits>
#include <cassert>
#include <cmath>
// THIS FILE IS ONLY USED FOR TESTING THE QWEN2VL MODEL
// IT IS NOT A PRODUCTION CODE
static bool qwen2vl_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed,
int n_batch, int * n_past, int * st_pos_id, struct clip_image_size * image_size) {
int n_embd = llama_model_n_embd(llama_get_model(ctx_llama));
const int patch_size = 14 * 2;
const int ph = image_size->height / patch_size + (image_size->height % patch_size > 0);
const int pw = image_size->width / patch_size + (image_size->width % patch_size > 0);
auto img_tokens = image_embed->n_image_pos;
// llama_pos mrope_pos[img_tokens * 4];
std::vector<llama_pos> mrope_pos;
mrope_pos.resize(img_tokens * 4);
for (int y = 0; y < ph; y++)
{
for (int x = 0; x < pw; x++)
{
int i = y * pw + x;
mrope_pos[i] = *st_pos_id;
mrope_pos[i + img_tokens] = *st_pos_id + y;
mrope_pos[i + img_tokens * 2] = *st_pos_id + x;
mrope_pos[i + img_tokens * 3] = 0;
}
}
*st_pos_id += std::max(pw, ph);
int processed = 0;
std::vector<llama_pos> batch_mrope_pos;
batch_mrope_pos.resize(img_tokens * 4);
for (int i = 0; i < img_tokens; i += n_batch) {
int n_eval = img_tokens - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
// llama_pos batch_mrope_pos[n_eval * 4];
std::fill(batch_mrope_pos.begin(), batch_mrope_pos.end(), 0);
memcpy(batch_mrope_pos.data(), &mrope_pos[processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval * 1], &mrope_pos[img_tokens * 1 + processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval * 2], &mrope_pos[img_tokens * 2 + processed], n_eval * sizeof(llama_pos));
memcpy(&batch_mrope_pos[n_eval * 3], &mrope_pos[img_tokens * 3 + processed], n_eval * sizeof(llama_pos));
llama_batch batch = {
int32_t(n_eval), // n_tokens
nullptr, // token
(image_embed->embed+i*n_embd), // embed
batch_mrope_pos.data(), // pos
nullptr, // n_seq_id
nullptr, // seq_id
nullptr, // logits
};
if (llama_decode(ctx_llama, batch)) {
LOG_ERR("%s : failed to eval\n", __func__);
return false;
}
*n_past += n_eval;
processed += n_eval;
}
return true;
}
static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_token> tokens, int n_batch, int * n_past, int * st_pos_id) {
int N = (int) tokens.size();
for (int i = 0; i < N; i += n_batch) {
int n_eval = (int) tokens.size() - i;
if (n_eval > n_batch) {
n_eval = n_batch;
}
auto batch = llama_batch_get_one(&tokens[i], n_eval);
if (llama_decode(ctx_llama, batch)) {
LOG_ERR("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
*n_past += n_eval;
*st_pos_id += n_eval;
}
return true;
}
static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past, int * st_pos_id) {
std::vector<llama_token> tokens;
tokens.push_back(id);
return eval_tokens(ctx_llama, tokens, 1, n_past, st_pos_id);
}
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, int * st_pos_id, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = common_tokenize(ctx_llama, str2, add_bos, true);
eval_tokens(ctx_llama, embd_inp, n_batch, n_past, st_pos_id);
return true;
}
static const char * sample(struct common_sampler * smpl,
struct llama_context * ctx_llama,
int * n_past, int * st_pos_id) {
const llama_token id = common_sampler_sample(smpl, ctx_llama, -1);
common_sampler_accept(smpl, id, true);
const llama_model * model = llama_get_model(ctx_llama);
const llama_vocab * vocab = llama_model_get_vocab(model);
static std::string ret;
if (llama_vocab_is_eog(vocab, id)) {
ret = "</s>";
} else {
ret = common_token_to_piece(ctx_llama, id);
}
eval_id(ctx_llama, id, n_past, st_pos_id);
return ret.c_str();
}
static const char* IMG_BASE64_TAG_BEGIN = "<img src=\"data:image/jpeg;base64,";
static const char* IMG_BASE64_TAG_END = "\">";
static void find_image_tag_in_prompt(const std::string& prompt, size_t& begin_out, size_t& end_out) {
begin_out = prompt.find(IMG_BASE64_TAG_BEGIN);
end_out = prompt.find(IMG_BASE64_TAG_END, (begin_out == std::string::npos) ? 0UL : begin_out);
}
static bool prompt_contains_image(const std::string& prompt) {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
return (begin != std::string::npos);
}
// replaces the base64 image tag in the prompt with `replacement`
static llava_image_embed * llava_image_embed_make_with_prompt_base64(struct clip_ctx * ctx_clip, int n_threads, const std::string& prompt) {
size_t img_base64_str_start, img_base64_str_end;
find_image_tag_in_prompt(prompt, img_base64_str_start, img_base64_str_end);
if (img_base64_str_start == std::string::npos || img_base64_str_end == std::string::npos) {
LOG_ERR("%s: invalid base64 image tag. must be %s<base64 byte string>%s\n", __func__, IMG_BASE64_TAG_BEGIN, IMG_BASE64_TAG_END);
return NULL;
}
auto base64_bytes_start = img_base64_str_start + strlen(IMG_BASE64_TAG_BEGIN);
auto base64_bytes_count = img_base64_str_end - base64_bytes_start;
auto base64_str = prompt.substr(base64_bytes_start, base64_bytes_count );
auto required_bytes = base64::required_encode_size(base64_str.size());
auto img_bytes = std::vector<unsigned char>(required_bytes);
base64::decode(base64_str.begin(), base64_str.end(), img_bytes.begin());
auto embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, img_bytes.data(), img_bytes.size());
if (!embed) {
LOG_ERR("%s: could not load image from base64 string.\n", __func__);
return NULL;
}
return embed;
}
static std::string remove_image_from_prompt(const std::string& prompt, const char * replacement = "") {
size_t begin, end;
find_image_tag_in_prompt(prompt, begin, end);
if (begin == std::string::npos || end == std::string::npos) {
return prompt;
}
auto pre = prompt.substr(0, begin);
auto post = prompt.substr(end + strlen(IMG_BASE64_TAG_END));
return pre + replacement + post;
}
struct llava_context {
struct clip_ctx * ctx_clip = NULL;
struct llama_context * ctx_llama = NULL;
struct llama_model * model = NULL;
};
static void print_usage(int, char ** argv) {
LOG("\n example usage:\n");
LOG("\n %s -m <llava-v1.5-7b/ggml-model-q5_k.gguf> --mmproj <llava-v1.5-7b/mmproj-model-f16.gguf> --image <path/to/an/image.jpg> --image <path/to/another/image.jpg> [--temp 0.1] [-p \"describe the image in detail.\"]\n", argv[0]);
LOG("\n note: a lower temperature value like 0.1 is recommended for better quality.\n");
}
static struct llava_image_embed * load_image(llava_context * ctx_llava, common_params * params, const std::string & fname) {
// load and preprocess the image
llava_image_embed * embed = NULL;
auto prompt = params->prompt;
if (prompt_contains_image(prompt)) {
if (!params->image.empty()) {
LOG_INF("using base64 encoded image instead of command line image path\n");
}
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->cpuparams.n_threads, prompt);
if (!embed) {
LOG_ERR("%s: can't load image from prompt\n", __func__);
return NULL;
}
params->prompt = remove_image_from_prompt(prompt);
} else {
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->cpuparams.n_threads, fname.c_str());
if (!embed) {
fprintf(stderr, "%s: is %s really an image file?\n", __func__, fname.c_str());
return NULL;
}
}
return embed;
}
static void process_prompt(struct llava_context * ctx_llava, struct llava_image_embed * image_embed, common_params * params, const std::string & prompt) {
int n_past = 0;
int cur_pos_id = 0;
const int max_tgt_len = params->n_predict < 0 ? 256 : params->n_predict;
std::string system_prompt, user_prompt;
size_t image_pos = prompt.find("<|vision_start|>");
if (image_pos != std::string::npos) {
// new templating mode: Provide the full prompt including system message and use <image> as a placeholder for the image
system_prompt = prompt.substr(0, image_pos);
user_prompt = prompt.substr(image_pos + std::string("<|vision_pad|>").length());
LOG_INF("system_prompt: %s\n", system_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, system_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
LOG_INF("user_prompt: %s\n", user_prompt.c_str());
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
} else {
// llava-1.5 native mode
system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|>";
user_prompt = "<|vision_end|>" + prompt + "<|im_end|>\n<|im_start|>assistant\n";
if (params->verbose_prompt) {
auto tmp = common_tokenize(ctx_llava->ctx_llama, user_prompt, true, true);
for (int i = 0; i < (int) tmp.size(); i++) {
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx_llava->ctx_llama, tmp[i]).c_str());
}
}
}
eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, true);
if (image_embed != nullptr) {
auto image_size = clip_get_load_image_size(ctx_llava->ctx_clip);
qwen2vl_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past, &cur_pos_id, image_size);
}
eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, &cur_pos_id, false);
// generate the response
LOG("\n");
struct common_sampler * smpl = common_sampler_init(ctx_llava->model, params->sampling);
if (!smpl) {
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__);
exit(1);
}
std::string response = "";
for (int i = 0; i < max_tgt_len; i++) {
const char * tmp = sample(smpl, ctx_llava->ctx_llama, &n_past, &cur_pos_id);
response += tmp;
if (strcmp(tmp, "</s>") == 0) break;
if (strstr(tmp, "###")) break; // Yi-VL behavior
LOG("%s", tmp);
if (strstr(response.c_str(), "<|im_end|>")) break; // Yi-34B llava-1.6 - for some reason those decode not as the correct token (tokenizer works)
if (strstr(response.c_str(), "<|im_start|>")) break; // Yi-34B llava-1.6
if (strstr(response.c_str(), "USER:")) break; // mistral llava-1.6
fflush(stdout);
}
common_sampler_free(smpl);
LOG("\n");
}
static struct llama_model * llava_init(common_params * params) {
llama_backend_init();
llama_numa_init(params->numa);
llama_model_params model_params = common_model_params_to_llama(*params);
llama_model * model = llama_model_load_from_file(params->model.path.c_str(), model_params);
if (model == NULL) {
LOG_ERR("%s: unable to load model\n" , __func__);
return NULL;
}
return model;
}
static struct llava_context * llava_init_context(common_params * params, llama_model * model) {
const char * clip_path = params->mmproj.path.c_str();
auto prompt = params->prompt;
if (prompt.empty()) {
prompt = "describe the image in detail.";
}
auto ctx_clip = clip_model_load(clip_path, GGML_LOG_LEVEL_INFO);
llama_context_params ctx_params = common_context_params_to_llama(*params);
ctx_params.n_ctx = params->n_ctx < 2048 ? 2048 : params->n_ctx; // we need a longer context size to process image embeddings
llama_context * ctx_llama = llama_init_from_model(model, ctx_params);
if (ctx_llama == NULL) {
LOG_ERR("%s: failed to create the llama_context\n" , __func__);
return NULL;
}
auto * ctx_llava = (struct llava_context *)malloc(sizeof(llava_context));
ctx_llava->ctx_llama = ctx_llama;
ctx_llava->ctx_clip = ctx_clip;
ctx_llava->model = model;
return ctx_llava;
}
static void llava_free(struct llava_context * ctx_llava) {
if (ctx_llava->ctx_clip) {
clip_free(ctx_llava->ctx_clip);
ctx_llava->ctx_clip = NULL;
}
llama_free(ctx_llava->ctx_llama);
llama_model_free(ctx_llava->model);
llama_backend_free();
}
#ifndef NDEBUG
static void debug_test_mrope_2d() {
// 1. Initialize backend
ggml_backend_t backend = NULL;
std::string backend_name = "";
// #ifdef GGML_USE_CUDA
// fprintf(stderr, "%s: using CUDA backend\n", __func__);
// backend = ggml_backend_cuda_init(0); // init device 0
// backend_name = "cuda";
// if (!backend) {
// fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
// }
// #endif
// if there aren't GPU Backends fallback to CPU backend
if (!backend) {
backend = ggml_backend_cpu_init();
backend_name = "cpu";
}
// Calculate the size needed to allocate
size_t ctx_size = 0;
ctx_size += 2 * ggml_tensor_overhead(); // tensors
// no need to allocate anything else!
// 2. Allocate `ggml_context` to store tensor data
struct ggml_init_params params = {
/*.mem_size =*/ ctx_size,
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_backend_alloc_ctx_tensors()
};
struct ggml_context * ctx = ggml_init(params);
struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 128, 12, 30);
ggml_set_name(inp_raw, "inp_raw");
ggml_set_input(inp_raw);
struct ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 30 * 4);
ggml_set_name(pos, "pos");
ggml_set_input(pos);
std::vector<float> dummy_q;
dummy_q.resize(128 * 12 * 30);
std::fill(dummy_q.begin(), dummy_q.end(), 0.1);
// memcpy(inp_raw->data, dummy_q.data(), 128 * 12 * 30 * ggml_element_size(inp_raw));
std::vector<int> pos_id;
pos_id.resize(30 * 4);
for (int i = 0; i < 30; i ++) {
pos_id[i] = i;
pos_id[i + 30] = i + 10;
pos_id[i + 60] = i + 20;
pos_id[i + 90] = i + 30;
}
int sections[4] = {32, 32, 0, 0};
// 4. Allocate a `ggml_backend_buffer` to store all tensors
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
// 5. Copy tensor data from main memory (RAM) to backend buffer
ggml_backend_tensor_set(inp_raw, dummy_q.data(), 0, ggml_nbytes(inp_raw));
ggml_backend_tensor_set(pos, pos_id.data(), 0, ggml_nbytes(pos));
// 6. Create a `ggml_cgraph` for mul_mat operation
struct ggml_cgraph * gf = NULL;
struct ggml_context * ctx_cgraph = NULL;
// create a temporally context to build the graph
struct ggml_init_params params0 = {
/*.mem_size =*/ ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true, // the tensors will be allocated later by ggml_gallocr_alloc_graph()
};
ctx_cgraph = ggml_init(params0);
gf = ggml_new_graph(ctx_cgraph);
struct ggml_tensor * result0 = ggml_rope_multi(
ctx_cgraph, inp_raw, pos, nullptr,
128/2, sections, LLAMA_ROPE_TYPE_VISION, 32768, 1000000, 1,
0, 1, 32, 1);
// Add "result" tensor and all of its dependencies to the cgraph
ggml_build_forward_expand(gf, result0);
// 7. Create a `ggml_gallocr` for cgraph computation
ggml_gallocr_t allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
ggml_gallocr_alloc_graph(allocr, gf);
// 9. Run the computation
int n_threads = 1; // Optional: number of threads to perform some operations with multi-threading
if (ggml_backend_is_cpu(backend)) {
ggml_backend_cpu_set_n_threads(backend, n_threads);
}
ggml_backend_graph_compute(backend, gf);
// 10. Retrieve results (output tensors)
// in this example, output tensor is always the last tensor in the graph
struct ggml_tensor * result = result0;
// struct ggml_tensor * result = gf->nodes[gf->n_nodes - 1];
float * result_data = (float *)malloc(ggml_nbytes(result));
// because the tensor data is stored in device buffer, we need to copy it back to RAM
ggml_backend_tensor_get(result, result_data, 0, ggml_nbytes(result));
const std::string bin_file = "mrope_2d_" + backend_name +".bin";
std::ofstream outFile(bin_file, std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(result_data), ggml_nbytes(result));
outFile.close();
std::cout << "Data successfully written to " + bin_file << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
free(result_data);
// 11. Free memory and exit
ggml_free(ctx_cgraph);
ggml_gallocr_free(allocr);
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
ggml_backend_free(backend);
}
enum model_output_type {
conv3d,
patch_embed,
patch_win_attn_scatter,
first_attn_layer,
last_attn_layer,
attn_softmax,
final_layer,
};
static void debug_dump_img_embed(struct llava_context * ctx_llava, model_output_type output_type) {
constexpr int ih = 140;
constexpr int iw = 196;
// constexpr int ih = 56;
// constexpr int iw = 56;
// int n_embd = llama_model_n_embd(llama_get_model(ctx_llava->ctx_llama));
int n_embd = 1280;
int merge = 1;
if (output_type == model_output_type::final_layer) {
n_embd = 2048;
merge = 2;
}
else if (output_type == model_output_type::attn_softmax) {
merge = 1;
n_embd = (ih/14/merge) * (iw/14/merge) * 16;
}
int ne = (ih/14/merge) * (iw/14/merge) * n_embd;
float vals[iw * ih * 3];
// float embd[ne];
std::vector<float> embd;
embd.resize(ne);
for (int i = 0; i < iw*ih; i++)
{
for (int c = 0; c < 3; c++)
vals[i * 3 + c] = (float)i / (iw*ih);
}
clip_encode_float_image(ctx_llava->ctx_clip, 8, vals, ih, iw, embd.data());
std::string file_postfix = "";
switch (output_type)
{
case model_output_type::conv3d:
file_postfix = "conv3d";
break;
case model_output_type::patch_embed:
file_postfix = "patch_embed";
break;
case model_output_type::patch_win_attn_scatter:
file_postfix = "scatter";
break;
case model_output_type::first_attn_layer:
file_postfix = "first_attn";
break;
case model_output_type::last_attn_layer:
file_postfix = "last_attn";
break;
case model_output_type::attn_softmax:
file_postfix = "attn_softmax";
break;
case model_output_type::final_layer:
file_postfix = "final";
break;
default:
break;
}
auto output_path = "img_embed_" + file_postfix + ".bin";
std::ofstream outFile(output_path, std::ios::binary);
if (outFile.is_open()) {
outFile.write(reinterpret_cast<const char*>(embd.data()), ne * sizeof(float));
outFile.close();
std::cout << "Data successfully written to ::[ " << output_path << std::endl;
} else {
std::cerr << "Error opening file!" << std::endl;
}
}
#endif
int main(int argc, char ** argv) {
ggml_time_init();
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, print_usage)) {
return 1;
}
common_init();
if (params.mmproj.path.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
print_usage(argc, argv);
return 1;
}
auto * model = llava_init(&params);
if (model == NULL) {
fprintf(stderr, "%s: error: failed to init llava model\n", __func__);
return 1;
}
if (prompt_contains_image(params.prompt)) {
auto * ctx_llava = llava_init_context(&params, model);
auto * image_embed = load_image(ctx_llava, &params, "");
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
#ifndef NDEBUG
} else if (params.image[0].empty()) {
auto ctx_llava = llava_init_context(&params, model);
// debug_test_mrope_2d();
debug_dump_img_embed(ctx_llava, model_output_type::final_layer);
// debug_dump_img_embed(ctx_llava, model_output_type::last_attn_layer);
llama_perf_context_print(ctx_llava->ctx_llama);
ctx_llava->model = NULL;
llava_free(ctx_llava);
#endif
} else {
for (auto & image : params.image) {
auto * ctx_llava = llava_init_context(&params, model);
auto * image_embed = load_image(ctx_llava, &params, image);
if (!image_embed) {
LOG_ERR("%s: failed to load image %s. Terminating\n\n", __func__, image.c_str());
return 1;
}
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
llama_perf_context_print(ctx_llava->ctx_llama);
llava_image_embed_free(image_embed);
ctx_llava->model = NULL;
llava_free(ctx_llava);
}
}
llama_model_free(model);
return 0;
}

View file

@ -0,0 +1,5 @@
-r ../../requirements/requirements-convert_legacy_llama.txt
--extra-index-url https://download.pytorch.org/whl/cpu
pillow~=10.2.0
torch~=2.2.1
torchvision~=0.17.1

BIN
tools/mtmd/test-1.jpeg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 121 KiB

123
tools/mtmd/tests.sh Executable file
View file

@ -0,0 +1,123 @@
#!/bin/bash
# make sure we are in the right directory
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
cd $SCRIPT_DIR
#export LLAMA_CACHE="$SCRIPT_DIR/tmp"
set -eux
mkdir -p $SCRIPT_DIR/output
PROJ_ROOT="$SCRIPT_DIR/../.."
cd $PROJ_ROOT
# Check if the first argument is "big", then run test with big models
# This is useful if we're running the script on a larger machine, so we can test the big models
RUN_BIG_TESTS=false
if [ "${1:-}" = "big" ]; then
RUN_BIG_TESTS=true
echo "Include BIG models..."
fi
###############
arr_bin=()
arr_hf=()
arr_tmpl=() # chat template
add_test() {
local bin=$1
local hf=$2
local tmpl=${3:-""} # default to empty string if not provided
arr_bin+=("$bin")
arr_hf+=("$hf")
arr_tmpl+=("$tmpl")
}
add_test "llama-mtmd-cli" "ggml-org/SmolVLM-500M-Instruct-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-2.2B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF:Q8_0"
add_test "llama-mtmd-cli" "ggml-org/gemma-3-4b-it-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "guinmoon/MobileVLM-3B-GGUF:Q4_K_M" "deepseek"
add_test "llama-mtmd-cli" "THUDM/glm-edge-v-5b-gguf:Q4_K_M"
add_test "llama-mtmd-cli" "second-state/Llava-v1.5-7B-GGUF:Q2_K" "vicuna"
add_test "llama-mtmd-cli" "cjpais/llava-1.6-mistral-7b-gguf:Q3_K" "vicuna"
add_test "llama-mtmd-cli" "ibm-research/granite-vision-3.2-2b-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "second-state/MiniCPM-Llama3-V-2_5-GGUF:Q2_K" # model from openbmb is corrupted
add_test "llama-mtmd-cli" "openbmb/MiniCPM-V-2_6-gguf:Q2_K"
add_test "llama-mtmd-cli" "openbmb/MiniCPM-o-2_6-gguf:Q4_0"
add_test "llama-mtmd-cli" "bartowski/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
# to test the big models, run: ./tests.sh big
if [ "$RUN_BIG_TESTS" = true ]; then
add_test "llama-mtmd-cli" "ggml-org/pixtral-12b-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Mistral-Small-3.1-24B-Instruct-2503-GGUF" "mistral-v7"
add_test "llama-mtmd-cli" "ggml-org/Qwen2-VL-2B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2-VL-7B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-3B-Instruct-GGUF:Q4_K_M"
add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-7B-Instruct-GGUF:Q4_K_M"
# add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-32B-Instruct-GGUF:Q4_K_M" # does not work on my mac M3 Ultra
# add_test "llama-mtmd-cli" "ggml-org/Qwen2.5-VL-72B-Instruct-GGUF:Q4_K_M" # too big
fi
# these models always give the wrong answer, not sure why
# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-Instruct-GGUF:Q4_K_M"
# add_test "llama-mtmd-cli" "ggml-org/SmolVLM-256M-Instruct-GGUF:Q8_0"
# add_test "llama-mtmd-cli" "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF:Q8_0"
# this model has broken chat template, not usable
# add_test "llama-mtmd-cli" "cmp-nct/Yi-VL-6B-GGUF:Q5_K"
###############
cmake --build build -j --target "${arr_bin[@]}"
arr_res=()
for i in "${!arr_bin[@]}"; do
bin="${arr_bin[$i]}"
hf="${arr_hf[$i]}"
tmpl="${arr_tmpl[$i]}"
echo "Running test with binary: $bin and HF model: $hf"
echo ""
echo ""
output=$(\
"$PROJ_ROOT/build/bin/$bin" \
-hf "$hf" \
--image $SCRIPT_DIR/test-1.jpeg \
-p "what is the publisher name of the newspaper?" \
--temp 0 -n 128 \
${tmpl:+--chat-template "$tmpl"} \
2>&1 | tee /dev/tty)
echo "$output" > $SCRIPT_DIR/output/$bin-$(echo "$hf" | tr '/' '-').log
if echo "$output" | grep -iq "new york"; then
result="\033[32mOK\033[0m: $bin $hf"
else
result="\033[31mFAIL\033[0m: $bin $hf"
fi
echo -e "$result"
arr_res+=("$result")
echo ""
echo ""
echo ""
echo "#################################################"
echo "#################################################"
echo ""
echo ""
done
set +x
for i in "${!arr_res[@]}"; do
echo -e "${arr_res[$i]}"
done
echo ""
echo "Output logs are saved in $SCRIPT_DIR/output"