sampling : refactor init to use llama_sampling_params (#3696)
* sampling : refactor init to use llama_sampling_params * llama : combine repetition, frequency and presence penalties in 1 call * examples : remove embd-input and gptneox-wip * sampling : rename penalty params + reduce size of "prev" vector * sampling : add llama_sampling_print helper * sampling : hide prev behind API and apply #3661 ggml-ci
This commit is contained in:
parent
8cf19d60dc
commit
d1031cf49c
30 changed files with 365 additions and 4502 deletions
94
llama.cpp
94
llama.cpp
|
@ -1018,8 +1018,8 @@ enum e_model {
|
|||
};
|
||||
|
||||
static const size_t kB = 1024;
|
||||
static const size_t MB = kB*kB;
|
||||
static const size_t GB = kB*kB*kB;
|
||||
static const size_t MB = 1024*kB;
|
||||
static const size_t GB = 1024*MB;
|
||||
|
||||
struct llama_hparams {
|
||||
bool vocab_only;
|
||||
|
@ -1042,21 +1042,21 @@ struct llama_hparams {
|
|||
float f_max_alibi_bias;
|
||||
|
||||
bool operator!=(const llama_hparams & other) const {
|
||||
if (this->vocab_only != other.vocab_only) return true;
|
||||
if (this->n_vocab != other.n_vocab) return true;
|
||||
if (this->vocab_only != other.vocab_only) return true;
|
||||
if (this->n_vocab != other.n_vocab) return true;
|
||||
if (this->n_ctx_train != other.n_ctx_train) return true;
|
||||
if (this->n_embd != other.n_embd) return true;
|
||||
if (this->n_head != other.n_head) return true;
|
||||
if (this->n_head_kv != other.n_head_kv) return true;
|
||||
if (this->n_layer != other.n_layer) return true;
|
||||
if (this->n_rot != other.n_rot) return true;
|
||||
if (this->n_ff != other.n_ff) return true;
|
||||
if (this->n_embd != other.n_embd) return true;
|
||||
if (this->n_head != other.n_head) return true;
|
||||
if (this->n_head_kv != other.n_head_kv) return true;
|
||||
if (this->n_layer != other.n_layer) return true;
|
||||
if (this->n_rot != other.n_rot) return true;
|
||||
if (this->n_ff != other.n_ff) return true;
|
||||
|
||||
const float EPSILON = 1e-9;
|
||||
|
||||
if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
|
||||
if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
|
||||
if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
|
||||
if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
|
||||
if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
|
||||
if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
|
||||
if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
|
||||
|
||||
return false;
|
||||
|
@ -1195,11 +1195,11 @@ struct llama_vocab {
|
|||
id special_sep_id = -1;
|
||||
id special_pad_id = -1;
|
||||
|
||||
id linefeed_id = 13;
|
||||
id linefeed_id = 13;
|
||||
id special_prefix_id = 32007;
|
||||
id special_middle_id = 32009;
|
||||
id special_suffix_id = 32008;
|
||||
id special_eot_id = 32010;
|
||||
id special_eot_id = 32010;
|
||||
|
||||
int find_bpe_rank(std::string token_left, std::string token_right) const {
|
||||
replace_all(token_left, " ", "\u0120");
|
||||
|
@ -1359,10 +1359,7 @@ static bool llama_kv_cache_init(
|
|||
cache.cells.clear();
|
||||
cache.cells.resize(n_ctx);
|
||||
|
||||
// TODO: this should be:
|
||||
// cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
|
||||
// change it and test that it works
|
||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
||||
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
|
||||
memset(cache.buf.data, 0, cache.buf.size);
|
||||
|
||||
struct ggml_init_params params;
|
||||
|
@ -7417,37 +7414,15 @@ void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array
|
|||
llama_sample_temp(ctx, candidates_p, temp);
|
||||
}
|
||||
|
||||
void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
|
||||
if (last_tokens_size == 0 || penalty == 1.0f) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
for (size_t i = 0; i < candidates->size; ++i) {
|
||||
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
|
||||
if (token_iter == last_tokens + last_tokens_size) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
|
||||
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
|
||||
if (candidates->data[i].logit <= 0) {
|
||||
candidates->data[i].logit *= penalty;
|
||||
} else {
|
||||
candidates->data[i].logit /= penalty;
|
||||
}
|
||||
}
|
||||
|
||||
candidates->sorted = false;
|
||||
|
||||
if (ctx) {
|
||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
}
|
||||
}
|
||||
|
||||
void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
|
||||
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
|
||||
void llama_sample_repetition_penalties(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
const llama_token * last_tokens,
|
||||
size_t penalty_last_n,
|
||||
float penalty_repeat,
|
||||
float penalty_freq,
|
||||
float penalty_present) {
|
||||
if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -7455,19 +7430,28 @@ void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, l
|
|||
|
||||
// Create a frequency map to count occurrences of each token in last_tokens
|
||||
std::unordered_map<llama_token, int> token_count;
|
||||
for (size_t i = 0; i < last_tokens_size; ++i) {
|
||||
token_count[last_tokens_p[i]]++;
|
||||
for (size_t i = 0; i < penalty_last_n; ++i) {
|
||||
token_count[last_tokens[i]]++;
|
||||
}
|
||||
|
||||
// Apply frequency and presence penalties to the candidates
|
||||
for (size_t i = 0; i < candidates->size; ++i) {
|
||||
auto token_iter = token_count.find(candidates->data[i].id);
|
||||
const auto token_iter = token_count.find(candidates->data[i].id);
|
||||
if (token_iter == token_count.end()) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int count = token_iter->second;
|
||||
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
|
||||
const int count = token_iter->second;
|
||||
|
||||
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
|
||||
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
|
||||
if (candidates->data[i].logit <= 0) {
|
||||
candidates->data[i].logit *= penalty_repeat;
|
||||
} else {
|
||||
candidates->data[i].logit /= penalty_repeat;
|
||||
}
|
||||
|
||||
candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
|
||||
}
|
||||
|
||||
candidates->sorted = false;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue