llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
* llama : refactor llama_context, llama_kv_cache, llm_build_context ggml-ci * graph : don't mutate the KV cache during defrag ggml-ci * context : reduce virtuals + remove test function ggml-ci * context : move interface implementation to source file + factory ggml-ci * graph : move KV cache build functions to llama_context impl ggml-ci * graph : remove model reference from build_pooling ggml-ci * graph : remove llama_model reference ggml-ci * kv_cache : provide rope factors ggml-ci * graph : rework inputs to use only unique_ptr, remove attn input abstraction ggml-ci * context : remove llama_context_i abstraction ggml-ci * context : clean-up ggml-ci * graph : clean-up ggml-ci * llama : remove redundant keywords (struct, enum) ggml-ci * model : adapt gemma3 ggml-ci * graph : restore same attention ops as on master ggml-ci * llama : remove TODO + fix indent ggml-ci
This commit is contained in:
parent
2048b5913d
commit
e0dbec0bc6
46 changed files with 13903 additions and 12190 deletions
|
@ -15,11 +15,11 @@
|
|||
//
|
||||
|
||||
struct llama_adapter_cvec {
|
||||
struct ggml_tensor * tensor_for(int il) const;
|
||||
ggml_tensor * tensor_for(int il) const;
|
||||
|
||||
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
|
||||
ggml_tensor * apply_to(ggml_context * ctx, ggml_tensor * cur, int il) const;
|
||||
|
||||
int32_t apply(
|
||||
bool apply(
|
||||
const llama_model & model,
|
||||
const float * data,
|
||||
size_t len,
|
||||
|
@ -36,7 +36,7 @@ private:
|
|||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
||||
std::vector<struct ggml_tensor *> tensors; // per layer
|
||||
std::vector<ggml_tensor *> tensors; // per layer
|
||||
};
|
||||
|
||||
//
|
||||
|
@ -44,8 +44,8 @@ private:
|
|||
//
|
||||
|
||||
struct llama_adapter_lora_weight {
|
||||
struct ggml_tensor * a = nullptr;
|
||||
struct ggml_tensor * b = nullptr;
|
||||
ggml_tensor * a = nullptr;
|
||||
ggml_tensor * b = nullptr;
|
||||
|
||||
// get actual scale based on rank and alpha
|
||||
float get_scale(float alpha, float adapter_scale) const {
|
||||
|
@ -55,12 +55,12 @@ struct llama_adapter_lora_weight {
|
|||
}
|
||||
|
||||
llama_adapter_lora_weight() = default;
|
||||
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
llama_adapter_lora_weight(ggml_tensor * a, ggml_tensor * b) : a(a), b(b) {}
|
||||
};
|
||||
|
||||
struct llama_adapter_lora {
|
||||
// map tensor name to lora_a_b
|
||||
std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
|
||||
std::unordered_map<std::string, llama_adapter_lora_weight> ab_map;
|
||||
|
||||
std::vector<ggml_context_ptr> ctxs;
|
||||
std::vector<ggml_backend_buffer_ptr> bufs;
|
||||
|
@ -70,5 +70,7 @@ struct llama_adapter_lora {
|
|||
llama_adapter_lora() = default;
|
||||
~llama_adapter_lora() = default;
|
||||
|
||||
llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
|
||||
llama_adapter_lora_weight * get_weight(ggml_tensor * w);
|
||||
};
|
||||
|
||||
using llama_adapter_loras = std::unordered_map<llama_adapter_lora *, float>;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue