kv-cache : add SWA support (#13194)
* kv-cache : prepare for SWA ggml-ci * kv-cache : initial iSWA implementation ggml-ci * kv-cache : rework error recovery logic ggml-ci * models : fix Phi-3 SWA parameters ggml-ci * model : adjust Granite to rope factor changes ggml-ci * server : check if context can do shifts ggml-ci * iswa : for now, always enable shifts (experiment) ggml-ci * kv-cache : simplify SWA logic ggml-ci * kv-cache : apply defrag when we fail to find slots for the batch ggml-ci * llama : update docs about llama_decode ggml-ci * kv-cache : update warning logs when no space for the batch is available ggml-ci * llama : add llama_kv_self_seq_pos_min() * kv-cache : keep track of partial SWA computes and print warnings * server : disallow use cases involving partial SWA context ggml-ci * llama : add param to control SWA cache size ggml-ci * minor : clean-up ggml-ci
This commit is contained in:
parent
f0adb80bf7
commit
e298d2fbd0
15 changed files with 1426 additions and 650 deletions
|
@ -571,9 +571,10 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
|
||||
ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
|
||||
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
|
||||
hparams.n_swa = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
|
||||
hparams.n_swa_pattern = 4; // pattern: 3 chunked - 1 full
|
||||
hparams.n_attn_chunk = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
|
||||
hparams.n_swa = 1; // TODO @ngxson : this is added to trigger the SWA branch (we store the chunked attn mask in the SWA tensor), will need to clean this up later
|
||||
|
||||
switch (hparams.n_expert) {
|
||||
case 16: type = LLM_TYPE_17B_16E; break;
|
||||
|
@ -855,20 +856,42 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
// for backward compatibility ; see: https://github.com/ggerganov/llama.cpp/pull/8931
|
||||
if ((hparams.n_layer == 32 || hparams.n_layer == 40) && hparams.n_ctx_train == 4096) {
|
||||
// default value for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct
|
||||
LLAMA_LOG_WARN("%s: assuming n_swa = 2047 for Phi-3-mini-4k-instruct and Phi-3-medium-4k-instruct\n", __func__);
|
||||
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
|
||||
hparams.n_swa = 2047;
|
||||
} else if (hparams.n_layer == 32 && hparams.n_head_kv(0) == 32 && hparams.n_ctx_train == 131072) {
|
||||
// default value for Phi-3-mini-128k-instruct
|
||||
// note: this seems incorrect because the window is bigger than the train context?
|
||||
hparams.n_swa = 262144;
|
||||
LLAMA_LOG_WARN("%s: assuming no SWA for Phi-3-mini-128k-instruct\n", __func__);
|
||||
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
|
||||
hparams.n_swa = hparams.n_ctx_train;
|
||||
hparams.n_swa_pattern = 1;
|
||||
} else if (hparams.n_layer == 40 && hparams.n_ctx_train == 131072) {
|
||||
// default value for Phi-3-medium-128k-instruct
|
||||
// note: this seems incorrect because the window is equal to the train context?
|
||||
hparams.n_swa = 131072;
|
||||
LLAMA_LOG_WARN("%s: assuming no SWA for Phi-3-medium-128k-instruct\n", __func__);
|
||||
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
|
||||
hparams.n_swa = hparams.n_ctx_train;
|
||||
hparams.n_swa_pattern = 1;
|
||||
}
|
||||
|
||||
bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
|
||||
if (!found_swa && hparams.n_swa == 0) {
|
||||
throw std::runtime_error("invalid value for sliding_window");
|
||||
}
|
||||
|
||||
if (hparams.n_swa > hparams.n_ctx_train) {
|
||||
LLAMA_LOG_WARN("%s: unexpected n_swa: %d >= %d, disabling SWA\n", __func__, hparams.n_swa, hparams.n_ctx_train);
|
||||
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_NONE;
|
||||
|
||||
hparams.n_swa = hparams.n_ctx_train;
|
||||
hparams.n_swa_pattern = 1;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_PHIMOE:
|
||||
{
|
||||
|
@ -937,6 +960,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
} break;
|
||||
case LLM_ARCH_GEMMA2:
|
||||
{
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.n_swa = 4096; // default value of gemma 2
|
||||
hparams.n_swa_pattern = 2;
|
||||
hparams.attn_soft_cap = true;
|
||||
|
@ -955,6 +979,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
} break;
|
||||
case LLM_ARCH_GEMMA3:
|
||||
{
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.n_swa_pattern = 6;
|
||||
|
||||
hparams.rope_freq_base_train_swa = 10000.0f;
|
||||
|
@ -1039,6 +1064,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
|
|||
} break;
|
||||
case LLM_ARCH_COHERE2:
|
||||
{
|
||||
hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
|
||||
hparams.n_swa_pattern = 4;
|
||||
|
||||
ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
|
||||
|
@ -4489,7 +4515,17 @@ const ggml_tensor * llama_model::get_tensor(const char * name) const {
|
|||
return it->second;
|
||||
}
|
||||
|
||||
ggml_tensor * llama_model::get_rope_factors(uint32_t n_ctx_per_seq, int il) const {
|
||||
float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
|
||||
return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
|
||||
}
|
||||
|
||||
float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
|
||||
return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
|
||||
}
|
||||
|
||||
ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
|
||||
const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
|
||||
|
||||
// choose long/short freq factors based on the context size
|
||||
if (layers[il].rope_freqs != nullptr) {
|
||||
return layers[il].rope_freqs;
|
||||
|
@ -4517,22 +4553,13 @@ struct llm_build_llama : public llm_graph_context {
|
|||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// temperature tuning
|
||||
ggml_tensor * inp_attn_scale = nullptr;
|
||||
if (arch == LLM_ARCH_LLAMA4) {
|
||||
inp_attn_scale = build_inp_attn_scale();
|
||||
}
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
bool use_rope = arch == LLM_ARCH_LLAMA4
|
||||
? (il + 1) % hparams.n_no_rope_layer_step != 0
|
||||
: true;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
|
@ -4542,7 +4569,169 @@ struct llm_build_llama : public llm_graph_context {
|
|||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
|
||||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, Kcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
cb(Qcur, "Qcur", il);
|
||||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
cur = build_attn(inp_attn, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
|
||||
cb(cur, "attn_out", il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network (non-MoE)
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
} else {
|
||||
// MoE branch
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_moe_ffn(cur,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, true,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = build_cvec(cur, il);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = build_norm(cur,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, -1);
|
||||
|
||||
cb(cur, "result_norm", -1);
|
||||
res->t_embd = cur;
|
||||
|
||||
// lm_head
|
||||
cur = build_lora_mm(model.output, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
res->t_logits = cur;
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
}
|
||||
};
|
||||
|
||||
struct llm_build_llama_iswa : public llm_graph_context {
|
||||
llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
ggml_tensor * cur;
|
||||
ggml_tensor * inpL;
|
||||
|
||||
inpL = build_inp_embd(model.tok_embd);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// temperature tuning
|
||||
ggml_tensor * inp_attn_scale = nullptr;
|
||||
inp_attn_scale = build_inp_attn_scale();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified_iswa();
|
||||
|
||||
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
|
@ -4590,7 +4779,7 @@ struct llm_build_llama : public llm_graph_context {
|
|||
cb(Kcur, "Kcur", il);
|
||||
cb(Vcur, "Vcur", il);
|
||||
|
||||
if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) {
|
||||
if (use_rope && hparams.use_kq_norm) {
|
||||
// Llama4TextL2Norm
|
||||
Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
|
||||
Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
|
||||
|
@ -4614,23 +4803,7 @@ struct llm_build_llama : public llm_graph_context {
|
|||
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network (non-MoE)
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_ffn(cur,
|
||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
||||
model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
} else if (arch == LLM_ARCH_LLAMA4) {
|
||||
{
|
||||
// llama4 MoE
|
||||
ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
|
@ -4660,26 +4833,6 @@ struct llm_build_llama : public llm_graph_context {
|
|||
|
||||
cur = ggml_add(ctx0, moe_out, shexp_out);
|
||||
cb(cur, "ffn_moe_out_merged", il);
|
||||
|
||||
} else {
|
||||
// MoE branch
|
||||
cur = build_norm(ffn_inp,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = build_moe_ffn(cur,
|
||||
model.layers[il].ffn_gate_inp,
|
||||
model.layers[il].ffn_up_exps,
|
||||
model.layers[il].ffn_gate_exps,
|
||||
model.layers[il].ffn_down_exps,
|
||||
nullptr,
|
||||
n_expert, n_expert_used,
|
||||
LLM_FFN_SILU, true,
|
||||
false, 0.0,
|
||||
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
|
||||
il);
|
||||
cb(cur, "ffn_moe_out", il);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
|
@ -4753,7 +4906,7 @@ struct llm_build_deci : public llm_graph_context {
|
|||
} else if (n_head > 0) {
|
||||
// self-attention
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
|
@ -7202,8 +7355,8 @@ struct llm_build_phi2 : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_phi3 : public llm_graph_context {
|
||||
llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
struct llm_build_phi3_iswa : public llm_graph_context {
|
||||
llm_build_phi3_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
|
@ -7217,7 +7370,7 @@ struct llm_build_phi3 : public llm_graph_context {
|
|||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
auto * inp_attn = build_attn_inp_kv_unified_iswa();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
auto * residual = inpL;
|
||||
|
@ -7225,7 +7378,7 @@ struct llm_build_phi3 : public llm_graph_context {
|
|||
// self-attention
|
||||
{
|
||||
// rope freq factors for 128k context
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
ggml_tensor* attn_norm_output = build_norm(inpL,
|
||||
model.layers[il].attn_norm,
|
||||
|
@ -7977,7 +8130,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
|
|||
for (int il = 0; il < n_layer; ++il) {
|
||||
ggml_tensor * inpSA = inpL;
|
||||
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL,
|
||||
|
@ -8277,8 +8430,8 @@ struct llm_build_gemma : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_gemma2 : public llm_graph_context {
|
||||
llm_build_gemma2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
struct llm_build_gemma2_iswa : public llm_graph_context {
|
||||
llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_k;
|
||||
|
||||
ggml_tensor * cur;
|
||||
|
@ -8292,7 +8445,7 @@ struct llm_build_gemma2 : public llm_graph_context {
|
|||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
auto * inp_attn = build_attn_inp_kv_unified_iswa();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
// norm
|
||||
|
@ -8414,8 +8567,8 @@ struct llm_build_gemma2 : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_gemma3 : public llm_graph_context {
|
||||
llm_build_gemma3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
struct llm_build_gemma3_iswa : public llm_graph_context {
|
||||
llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_k;
|
||||
|
||||
ggml_tensor * cur;
|
||||
|
@ -8433,13 +8586,11 @@ struct llm_build_gemma3 : public llm_graph_context {
|
|||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// TODO: is causal == true correct? might need some changes
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
auto * inp_attn = build_attn_inp_kv_unified_iswa();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const bool is_swa = hparams.is_swa(il);
|
||||
|
||||
const float freq_base_l = is_swa ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
|
||||
const float freq_scale_l = is_swa ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
|
||||
const float freq_base_l = model.get_rope_freq_base (cparams, il);
|
||||
const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
|
||||
|
||||
// norm
|
||||
cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
|
||||
|
@ -9016,8 +9167,8 @@ struct llm_build_command_r : public llm_graph_context {
|
|||
}
|
||||
};
|
||||
|
||||
struct llm_build_cohere2 : public llm_graph_context {
|
||||
llm_build_cohere2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
struct llm_build_cohere2_iswa : public llm_graph_context {
|
||||
llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
@ -9032,7 +9183,7 @@ struct llm_build_cohere2 : public llm_graph_context {
|
|||
// inp_pos - contains the positions
|
||||
ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
auto * inp_attn = build_attn_inp_kv_unified();
|
||||
auto * inp_attn = build_attn_inp_kv_unified_iswa();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const bool is_swa = hparams.is_swa(il);
|
||||
|
@ -9045,7 +9196,7 @@ struct llm_build_cohere2 : public llm_graph_context {
|
|||
// self-attention
|
||||
{
|
||||
// rope freq factors for 128k context
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
|
@ -9983,7 +10134,7 @@ struct llm_build_deepseek : public llm_graph_context {
|
|||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
|
@ -11347,7 +11498,7 @@ struct llm_build_exaone : public llm_graph_context {
|
|||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
|
@ -12263,7 +12414,7 @@ struct llm_build_granite : public llm_graph_context {
|
|||
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
|
||||
|
||||
if (use_rope) {
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, Qcur, inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
|
@ -12916,7 +13067,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
|
|||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(n_ctx_per_seq, il);
|
||||
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
|
||||
|
@ -13068,14 +13219,31 @@ llama_memory_i * llama_model::create_memory(const llama_memory_params & params,
|
|||
|
||||
LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
|
||||
|
||||
res = new llama_kv_cache_unified(
|
||||
*this,
|
||||
params.type_k,
|
||||
params.type_v,
|
||||
!cparams.flash_attn,
|
||||
cparams.offload_kqv,
|
||||
cparams.n_ctx,
|
||||
padding);
|
||||
if (hparams.n_swa > 0) {
|
||||
res = new llama_kv_cache_unified_iswa(
|
||||
*this,
|
||||
params.type_k,
|
||||
params.type_v,
|
||||
!cparams.flash_attn,
|
||||
cparams.offload_kqv,
|
||||
cparams.n_ctx,
|
||||
params.swa_full,
|
||||
cparams.n_seq_max,
|
||||
cparams.n_batch,
|
||||
padding);
|
||||
} else {
|
||||
res = new llama_kv_cache_unified(
|
||||
*this,
|
||||
nullptr,
|
||||
params.type_k,
|
||||
params.type_v,
|
||||
!cparams.flash_attn,
|
||||
cparams.offload_kqv,
|
||||
cparams.n_ctx,
|
||||
padding,
|
||||
hparams.n_swa,
|
||||
hparams.swa_type);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -13090,11 +13258,14 @@ llm_graph_result_ptr llama_model::build_graph(
|
|||
|
||||
switch (arch) {
|
||||
case LLM_ARCH_LLAMA:
|
||||
case LLM_ARCH_LLAMA4:
|
||||
case LLM_ARCH_MINICPM:
|
||||
{
|
||||
llm = std::make_unique<llm_build_llama>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_LLAMA4:
|
||||
{
|
||||
llm = std::make_unique<llm_build_llama_iswa>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_DECI:
|
||||
{
|
||||
llm = std::make_unique<llm_build_deci>(*this, params, gf);
|
||||
|
@ -13169,7 +13340,7 @@ llm_graph_result_ptr llama_model::build_graph(
|
|||
case LLM_ARCH_PHI3:
|
||||
case LLM_ARCH_PHIMOE:
|
||||
{
|
||||
llm = std::make_unique<llm_build_phi3>(*this, params, gf);
|
||||
llm = std::make_unique<llm_build_phi3_iswa>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_PLAMO:
|
||||
{
|
||||
|
@ -13201,11 +13372,11 @@ llm_graph_result_ptr llama_model::build_graph(
|
|||
} break;
|
||||
case LLM_ARCH_GEMMA2:
|
||||
{
|
||||
llm = std::make_unique<llm_build_gemma2>(*this, params, gf);
|
||||
llm = std::make_unique<llm_build_gemma2_iswa>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_GEMMA3:
|
||||
{
|
||||
llm = std::make_unique<llm_build_gemma3>(*this, params, gf);
|
||||
llm = std::make_unique<llm_build_gemma3_iswa>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_STARCODER2:
|
||||
{
|
||||
|
@ -13225,7 +13396,7 @@ llm_graph_result_ptr llama_model::build_graph(
|
|||
} break;
|
||||
case LLM_ARCH_COHERE2:
|
||||
{
|
||||
llm = std::make_unique<llm_build_cohere2>(*this, params, gf);
|
||||
llm = std::make_unique<llm_build_cohere2_iswa>(*this, params, gf);
|
||||
} break;
|
||||
case LLM_ARCH_DBRX:
|
||||
{
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue