llama : add support for jina-reranker-v2 (#13900)

This commit is contained in:
Sigbjørn Skjæret 2025-05-29 21:42:31 +02:00 committed by GitHub
parent 2b131621e6
commit e83ba3e460
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 119 additions and 72 deletions

View file

@ -3782,44 +3782,93 @@ class BertModel(TextModel):
from sentencepiece import sentencepiece_model_pb2 as model
tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
tokenizer_json = {}
tokenizer_config_json = {}
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
tokenizer_path = self.dir_model / 'tokenizer.json'
tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
from base64 import b64decode
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
with open(tokenizer_path, "r", encoding="utf-8") as fp:
tokenizer_json = json.load(fp)
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
if tokenizer_config_path.is_file():
with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
tokenizer_config_json = json.load(fp)
add_prefix = tokenizer.add_prefix_space
remove_whitespaces = tokenizer.clean_up_tokenization_spaces
precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
vocab_size = self.hparams.get("vocab_size", tokenizer.vocab_size)
else:
sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
if isinstance(tokenizer, SentencePieceProcessor):
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
else:
added_vocab = tokenizer.get_added_vocab()
unk_token = tokenizer_config_json.get("unk_token")
unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
for token_id in range(vocab_size):
piece = tokenizer._convert_id_to_token(token_id)
text = piece.encode("utf-8")
score = tokenizer_json["model"]["vocab"][token_id][1]
toktype = SentencePieceTokenTypes.NORMAL
if token_id == unk_token_id:
toktype = SentencePieceTokenTypes.UNKNOWN
elif token_id in tokenizer.all_special_ids:
toktype = SentencePieceTokenTypes.CONTROL
elif token_id in added_vocab.values():
toktype = SentencePieceTokenTypes.USER_DEFINED
# No reliable way to detect this, but jina doesn't have any
# elif tokenizer.IsByte(token_id):
# toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
@ -3829,15 +3878,16 @@ class BertModel(TextModel):
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
# realign tokens (see HF tokenizer code)
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
toktypes = [
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]
if isinstance(tokenizer, SentencePieceProcessor):
# realign tokens (see HF tokenizer code)
tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
toktypes = [
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.CONTROL,
SentencePieceTokenTypes.UNKNOWN,
] + toktypes[3:-1]
self.gguf_writer.add_tokenizer_model("t5")
self.gguf_writer.add_tokenizer_pre("default")