feat: add GGML_UNARY_OP_ARGMAX Metal kernel (ggml/1019)

* implemented argmax kernel

* tpig -> tgpig

* change to strides

* contiguous assertions

* kernel working and tested

* argmax simd parallel implementation

* added 2 new tests for argmax in test-backend-ops

* cosmit

* added 3 tests cases for perf eval

* add test_argmax in make_test_cases_perf

* Update test-backend-ops.cpp

Co-authored-by: Diego Devesa <slarengh@gmail.com>

---------

Co-authored-by: Diego Devesa <slarengh@gmail.com>
This commit is contained in:
PAB 2024-12-02 19:27:24 +01:00 committed by Georgi Gerganov
parent 667d70d170
commit efb6ae9630
3 changed files with 92 additions and 6 deletions

View file

@ -392,6 +392,7 @@ enum ggml_metal_kernel_type {
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32,
GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32,
GGML_METAL_KERNEL_TYPE_ARGMAX,
GGML_METAL_KERNEL_TYPE_COUNT
};
@ -956,6 +957,7 @@ static struct ggml_backend_metal_context * ggml_metal_init(ggml_backend_dev_t de
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIN, sin, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_COS, cos, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGMAX, argmax, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_AVG_F32, pool_2d_avg_f32, true);
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_POOL_2D_MAX_F32, pool_2d_max_f32, true);
}
@ -1086,6 +1088,7 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
return has_simdgroup_reduction;
case GGML_OP_RMS_NORM:
return has_simdgroup_reduction && (op->ne[0] % 4 == 0);
case GGML_OP_ARGMAX:
case GGML_OP_NORM:
case GGML_OP_ROPE:
return true;
@ -3845,6 +3848,31 @@ static void ggml_metal_encode_node(
[encoder dispatchThreadgroups:MTLSizeMake(n_tg, 1, 1) threadsPerThreadgroup:MTLSizeMake(n_threads, 1, 1)];
} break;
case GGML_OP_ARGMAX:
{
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(nb00 == ggml_type_size(src0->type));
const int64_t nrows = ggml_nrows(src0);
int nth = 32; // SIMD width
while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
nth *= 2;
}
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGMAX].pipeline;
[encoder setComputePipelineState:pipeline];
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
[encoder setThreadgroupMemoryLength:32*sizeof(int32_t) atIndex:1];
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break;
default:
{
GGML_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, idx, ggml_op_name(dst->op));