quantize : handle user-defined pruning of whole layers (blocks) (#13037)
This commit is contained in:
parent
238005c2dc
commit
fa4a9f2a1c
3 changed files with 119 additions and 9 deletions
|
@ -1,5 +1,4 @@
|
|||
#include "llama-quant.h"
|
||||
|
||||
#include "llama-impl.h"
|
||||
#include "llama-model.h"
|
||||
#include "llama-model-loader.h"
|
||||
|
@ -27,6 +26,56 @@ static void zeros(std::ofstream & file, size_t n) {
|
|||
}
|
||||
}
|
||||
|
||||
static std::string remap_layer(const std::string & orig_name, const std::vector<int> & prune, std::map<int, std::string> & mapped, int & next_id) {
|
||||
if (prune.empty()) {
|
||||
return orig_name;
|
||||
}
|
||||
|
||||
static const std::regex pattern(R"(blk\.(\d+)\.)");
|
||||
if (std::smatch match; std::regex_search(orig_name, match, pattern)) {
|
||||
const int blk = std::stoi(match[1]);
|
||||
std::string new_name = orig_name;
|
||||
|
||||
if (mapped.count(blk)) {
|
||||
// Already mapped, do nothing
|
||||
} else if (std::find(prune.begin(), prune.end(), blk) != prune.end()) {
|
||||
mapped[blk] = "";
|
||||
} else if (blk < prune.front()) {
|
||||
mapped[blk] = std::to_string(blk);
|
||||
next_id = blk + 1;
|
||||
} else {
|
||||
mapped[blk] = std::to_string(next_id);
|
||||
++next_id;
|
||||
}
|
||||
|
||||
return mapped[blk].empty() ? mapped[blk] : new_name.replace(match.position(1), match.length(1), mapped[blk]);
|
||||
}
|
||||
|
||||
return orig_name;
|
||||
}
|
||||
|
||||
static std::string remap_imatrix (const std::string & orig_name, const std::map<int, std::string> & mapped) {
|
||||
if (mapped.empty()) {
|
||||
return orig_name;
|
||||
}
|
||||
|
||||
static const std::regex pattern(R"(blk\.(\d+)\.)");
|
||||
if (std::smatch match; std::regex_search(orig_name, match, pattern)) {
|
||||
const std::string blk(match[1]);
|
||||
std::string new_name = orig_name;
|
||||
|
||||
for (const auto & p : mapped) {
|
||||
if (p.second == blk) {
|
||||
LLAMA_LOG_DEBUG("(blk.%d imatrix) ", p.first);
|
||||
return new_name.replace(match.position(1), match.length(1), std::to_string(p.first));
|
||||
}
|
||||
}
|
||||
GGML_ABORT("\n%s: imatrix mapping error for %s\n", __func__, orig_name.c_str());
|
||||
}
|
||||
|
||||
return orig_name;
|
||||
}
|
||||
|
||||
struct quantize_state_impl {
|
||||
const llama_model & model;
|
||||
const llama_model_quantize_params * params;
|
||||
|
@ -568,6 +617,11 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|||
const size_t align = GGUF_DEFAULT_ALIGNMENT;
|
||||
gguf_context_ptr ctx_out { gguf_init_empty() };
|
||||
|
||||
std::vector<int> prune_list = {};
|
||||
if (params->prune_layers) {
|
||||
prune_list = *static_cast<const std::vector<int> *>(params->prune_layers);
|
||||
}
|
||||
|
||||
// copy the KV pairs from the input file
|
||||
gguf_set_kv (ctx_out.get(), ml.meta.get());
|
||||
gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
|
||||
|
@ -597,12 +651,32 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|||
}
|
||||
}
|
||||
|
||||
std::map<int, std::string> mapped;
|
||||
int blk_id = 0;
|
||||
int pruned_attention_w = 0;
|
||||
|
||||
// make a list of weights
|
||||
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
|
||||
tensors.reserve(ml.weights_map.size());
|
||||
for (const auto & it : ml.weights_map) {
|
||||
const std::string remapped_name(remap_layer(it.first, prune_list, mapped, blk_id));
|
||||
if (remapped_name.empty()) {
|
||||
if (it.first.find("attn_v.weight") != std::string::npos ||
|
||||
it.first.find("attn_qkv.weight") != std::string::npos ||
|
||||
it.first.find("attn_kv_b.weight") != std::string::npos) {
|
||||
pruned_attention_w++;
|
||||
}
|
||||
LLAMA_LOG_DEBUG("%s: pruning tensor %s\n", __func__, it.first.c_str());
|
||||
continue;
|
||||
} else if (remapped_name != it.first) {
|
||||
ggml_set_name(it.second.tensor, remapped_name.c_str());
|
||||
LLAMA_LOG_DEBUG("%s: tensor %s remapped to %s\n", __func__, it.first.c_str(), ggml_get_name(it.second.tensor));
|
||||
}
|
||||
tensors.push_back(&it.second);
|
||||
}
|
||||
if (!prune_list.empty()) {
|
||||
gguf_set_val_u32(ctx_out.get(), ml.llm_kv(LLM_KV_BLOCK_COUNT).c_str(), blk_id);
|
||||
}
|
||||
|
||||
// keep_split requires that the weights are sorted by split index
|
||||
if (params->keep_split) {
|
||||
|
@ -640,7 +714,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|||
if (llama_model_has_encoder(&model)) {
|
||||
n_attn_layer *= 3;
|
||||
}
|
||||
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
||||
GGML_ASSERT((qs.n_attention_wv == n_attn_layer - pruned_attention_w) && "n_attention_wv is unexpected");
|
||||
}
|
||||
|
||||
size_t total_size_org = 0;
|
||||
|
@ -681,7 +755,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|||
for (size_t i = 0; i < ctx_outs.size(); ++i) {
|
||||
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
|
||||
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
|
||||
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
|
||||
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), (int32_t)tensors.size());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -832,7 +906,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|||
|
||||
const float * imatrix = nullptr;
|
||||
if (imatrix_data) {
|
||||
auto it = imatrix_data->find(tensor->name);
|
||||
auto it = imatrix_data->find(remap_imatrix(tensor->name, mapped));
|
||||
if (it == imatrix_data->end()) {
|
||||
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
|
||||
} else {
|
||||
|
@ -947,6 +1021,7 @@ llama_model_quantize_params llama_model_quantize_default_params() {
|
|||
/*.imatrix =*/ nullptr,
|
||||
/*.kv_overrides =*/ nullptr,
|
||||
/*.tensor_type =*/ nullptr,
|
||||
/*.prune_layers =*/ nullptr
|
||||
};
|
||||
|
||||
return result;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue