llama : fix pre-tokenization of non-special added tokens (#8228)

* llama : fix mpt and olmo pre-tokenizer

* llama : pre-tokenize non-special user-defined tokens first

* llama : fix detection of control-like user-defined tokens

* convert_hf : identify which user-defined tokens are control tokens

Only used in _set_vocab_gpt2() for now.

* convert_hf : identify more added control tokens for SPM tokenziers

This makes Gemma and Gemma-2 tokenize pretty much EVERYTHING correctly,
including HTML tags and consecutive spaces,
but it unfortunately requires model re-conversion.

There seems to be a weird behavior of the HF tokenizer for Gemma,
which prefers to use the 16-space token over more lengthy space tokens,
while using the SentencePiece tokenizer does not do this.
(the implementation in llama.cpp has the same behavior as SentencePiece)

* llama : fix wrong pre-tokenization of byte tokens

* llama : fix Viking pre-tokenizer regex

The order was previously wrong, which caused errors in some tests.

* llama : fix command-r detokenization

* convert_hf : reduce usages of the UNKNOWN token type

* llama : add UNKNOWN tokens in the special tokens cache

* convert_hf : reduce usages of UNKNOWN for InternLM2

This makes the changes from #8321 more consistent
with the other changes made here.

* test-tokenizer-random : reduce potential confilcts with #8379

* test-tokenizer-random : add a failing edge case for falcon
This commit is contained in:
compilade 2024-07-13 23:35:10 -04:00 committed by GitHub
parent 17eb6aa8a9
commit fa79495bb4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 91 additions and 61 deletions

View file

@ -5419,6 +5419,7 @@ static void llm_load_vocab(
} else if (
tokenizer_pre == "command-r") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "qwen2") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
@ -5652,7 +5653,7 @@ static void llm_load_vocab(
// build special tokens cache
{
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
if (vocab.id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) {
vocab.cache_special_tokens.push_back(id);
}
}
@ -15411,17 +15412,6 @@ struct llm_tokenizer_bpe {
"[0-9][0-9][0-9]",
};
break;
case LLAMA_VOCAB_PRE_TYPE_MPT:
// TODO: MPT pre-tokenization regexes are unknown
// the following are close, but not exact. run the following:
// ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
regex_exprs = {
"\\s?\\p{L}+",
"\\s?\\p{P}+",
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
};
break;
case LLAMA_VOCAB_PRE_TYPE_STARCODER:
case LLAMA_VOCAB_PRE_TYPE_REFACT:
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
@ -15431,6 +15421,7 @@ struct llm_tokenizer_bpe {
};
break;
case LLAMA_VOCAB_PRE_TYPE_GPT2:
case LLAMA_VOCAB_PRE_TYPE_MPT:
case LLAMA_VOCAB_PRE_TYPE_OLMO:
case LLAMA_VOCAB_PRE_TYPE_JAIS:
regex_exprs = {
@ -15457,8 +15448,8 @@ struct llm_tokenizer_bpe {
break;
case LLAMA_VOCAB_PRE_TYPE_VIKING:
regex_exprs = {
"\\p{N}",
" ?[^(\\s|.,!?…。,、।۔،)]+",
"\\p{N}",
};
break;
default:
@ -16178,12 +16169,20 @@ struct fragment_buffer_variant {
// #define PRETOKENIZERDEBUG
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) {
// for each special token
for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
const auto & data = vocab.id_to_token[special_id];
const auto & special_token = data.text;
if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) {
// Ignore control and unknown tokens when parse_special == false
continue;
// User-defined tokens are still pre-tokenized before everything else
// ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726
// This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.)
}
// for each text fragment
std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
while (it != buffer.end()) {
@ -16296,7 +16295,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
if (!raw_text.empty()) {
fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
tokenizer_st_partition(vocab, fragment_buffer, parse_special);
}
switch (vocab.type) {