* Prefer vector flash decoding kernel for Gemma models
Vector flash decoding kernel was not being picked for models with head dimension 256. Gemma models are in this category.
Removing this limit improves e2e performance by upto 12% in gen phase throughput for Gemm models.
* Update ggml/src/ggml-cuda/fattn.cu
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
- Find out active blocks per SM using cudaOccupancyMaxActiveBlocksPerMultiprocessor API. Use this value to determine the optimal parallel_blocks value.
- Prefer vector flash attention kernels over MMA kernel for BS=1
Fixes Issue: #12182
---------
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Adds GGML_HIP_ROCWMMA_FATTN and rocwmma header check
Adds rocWMMA support to fattn-wmma-f16
---
Signed-off-by: Carl Klemm <carl@uvos.xyz>
Co-authored-by: Johannes Gäßler <johannesg@5d6.de>
Co-authored-by: Ben Jackson <ben@ben.com>
* CUDA: use mma PTX instructions for FlashAttention
* __shfl_sync workaround for movmatrix
* add __shfl_sync to HIP
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* Renames NVIDIA GPU-architecture flags to avoid name clashes with WinAPI. (e.g. CC_PASCAL, GPU architecture or WinAPI pascal compiler flag?)
* Reverts erroneous rename in SYCL-code.
* Renames GGML_CUDA_MIN_CC_DP4A to GGML_CUDA_CC_DP4A.
* Renames the rest of the compute capability macros for consistency.
* ggml : add ggml_flash_attn_ext_get_prec
* metal : use F16 precision in FA kernels
ggml-ci
* metal : minor clean-up
* metal : compile-guard bf16 FA kernels
ggml-ci
* build : remove obsolete compile flag [no ci]
* metal : prevent int overflows [no ci]
* cuda : disable BF16 FA
ggml-ci
* metal : fix BF16 requirement for FA kernels
ggml-ci
* make : clean-up [no ci]