The Granite's FIM tokens are very similar to Qwen's; it's just that
they use underscore instead of a dash. So <fim_middle> for example
instead of <fim-middle>.
Opening up tokenizer_config.json in ibm-granite/granite-3.3-8b-base
shows:
```
"<fim_prefix>",
"<fim_middle>",
"<fim_suffix>",
"<fim_pad>",
...
"<reponame>",
```
* Merged using squash to remove all noise commit messages
* Force flash attention off for `LLM_ARCH_DEEPSEEK2` - embedding too large
* Removed 3 conts (2x RoPE and 1x RMS-norm)
* Changed to use `<cmath>` instead of `<math.h>`
* Reverted removal of the 3 conts
* Used `reshape` in `llm_graph_context::build_attn_mha()`
* Use `k_pe = ggml_reshape`
* Removed the 3 conts again
* Removed the 3D views of `wk_b` and `wv_b`, and just save and 3D in GGUF
* Removed MQA optimisation from `build_attn_mha()` as no gains now
* Simplified `is_mla` branch in `llm_build_deepseek2()`
* Removed `build_attn_mla` and added `nullptr` to all `build_atnn` calls
* Fixed call to `build_attn` in `llm_build_t5_enc`
* Add llama_model_quantize_params parameters
* Add new quantize parameters parsing and validation
* Update usage
* Add new parameters defaults
* Add new quantization parameters logic
* Add llama_model_quantize_params parameters
* Add new quantize parameters parsing and validation
* Update usage
* Add new parameters defaults
* Add new quantization parameters logic
* Minor refactoring as per the contributors' coding guidelines
* Update descriptions to match existing style
* Add llama_model_quantize_params parameters
* Add new quantize parameters parsing and validation
* Update usage
* Add new parameters defaults
* Add new quantization parameters logic
* Minor refactoring as per the contributors' guidelines
* Implement general --tensor-type instead of tensor-specific command option
* Fix implied type bug
* Restore missing #includes
* Add regex capability for tensor selection
* Refactor function name and update ALLOWED_TENSOR_TYPE
* Add missing #include
* Handle edge case when tensor name is cls.output
* Minor logging improvement
* ggml : FA supports F32 V
* graph : cast KV to F16 when the KV cache is not used
ggml-ci
* server : add test that exercises embeddings with FA enabled
ggml-ci
* model : print tensor size during load
* cont : fix units MB -> MiB
Co-authored-by: Diego Devesa <slarengh@gmail.com>
---------
Co-authored-by: Diego Devesa <slarengh@gmail.com>
* vocab : add special infill tokens for CodeLlama
The commit adds the following special tokens for CodeLlama infill:
- `▁<PRE>`
- `▁<SUF>`
- `▁<MID>`
The motivation for this is that currently the infill example uses
CodeLlama as a suggested model. But when using this model the following
error is generated:
```console
/llama.cpp-debug/examples/infill/infill.cpp:165: GGML_ASSERT(llama_vocab_fim_pre(vocab) >= 0) failed
Could not attach to process. If your uid matches the uid of the target
process, check the setting of /proc/sys/kernel/yama/ptrace_scope, or try
again as the root user. For more details, see /etc/sysctl.d/10-ptrace.conf
ptrace: Operation not permitted.
No stack.
The program is not being run.
305251 Aborted (core dumped)
./build/bin/llama-infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf \
-c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 \
--in-prefix "def helloworld():\n print(\"hell" \
--in-suffix "\n print(\"goodbye world\")\n "
```
* squash! vocab : add special infill tokens for CodeLlama
Add _<EOT> as well.
this allow to use GPU host when possible over CPU repack.
this have the same effect to resolve this issues (#12498) without
completely disable CPU extra buffer.
Co-authored-by: philou <philou@framework>
* ggml : FA with different K, V head sizes (CPU)
ggml-ci
* metal : add FA with HS=192
* metal : extend FA to support different K and V head sizes
ggml-ci
* metal : add FA vector kernels for heads K 192 and V 128
ggml-ci
* ggml : restrict op on other backends to equal head sizes
ggml-ci
* metal : optimize FA-vec kernel
ggml-ci
* metal : FA remove mq registers
* metal : improve MoE mul_mat_id condition
ggml-ci
* metal : fix comments + remove unnecessary addition
ggml-ci
* metal : avoid too much shared memory usage with mul_mat_id
ggml-ci
* add edgellm model arch[conversation feature doesn't work]
* remove output.weight layer for edgellm arch
* [Model] update the name of the model
* update the name of model arch in convert gguf
* [Model] Refarctor the model arch into llama-model
* [Bug] Fix the bug in create attn kv
* [Code] Fix editorconfig erros
* [Code] Remove Trailing whitespace
* [Code] Remove Trailing whitespace
* [Code] Change the order of model arch in list
* [Code] Fix flake8 Lint errors
* Remove trailing white space
* [Code] Remove call in model arch
* Add support for GPT2, Bloom and CodeShell tied word embeddings
* Deduplicate tied word embeddings weights
* Workaround for incorrect weight map
It appears transformer.wte.weight is in the weight map even though the weights are not there, remove it if output weights are encountered first.
* check++
* fatfingers--
* graph : normalize Q, K, V shapes and add comments
ggml-ci
* context : synchronize before getting cross attention data
* model : fix command-r attention norm check
* llama : introduce llama_set_warmup() API call that controls warmup mode; use all MoE experts during warmup
* common : use new API to enable warmup mode during model warmup
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* sampler: turn lazy grammar trigger words to regexes
* add scripts/tool_bench.sh & .py
* constrain llama json output regardless of function name if matches at beginning
* update relaxed newline space rule in grammar tests
* support add_generation_prompt query parameter (useful for /apply_template)
* Update src/llama-grammar.cpp
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>