#include "unary-ops.h" static inline float op_abs(float x) { return fabsf(x); } static inline float op_sgn(float x) { return (x > 0.f) ? 1.f : ((x < 0.f) ? -1.f : 0.f); } static inline float op_neg(float x) { return -x; } static inline float op_step(float x) { return (x > 0.f) ? 1.f : 0.f; } static inline float op_tanh(float x) { return tanhf(x); } static inline float op_elu(float x) { return (x > 0.f) ? x : expm1f(x); } static inline float op_relu(float x) { return (x > 0.f) ? x : 0.f; } static inline float op_sigmoid(float x) { return 1.f / (1.f + expf(-x)); } static inline float op_hardsigmoid(float x) { return fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f)); } static inline float op_exp(float x) { return expf(x); } static inline float op_hardswish(float x) { return x * fminf(1.0f, fmaxf(0.0f, (x + 3.0f) / 6.0f)); } static inline float op_sqr(float x) { return x * x; } static inline float op_sqrt(float x) { return sqrtf(x); } static inline float op_sin(float x) { return sinf(x); } static inline float op_cos(float x) { return cosf(x); } static inline float op_log(float x) { return logf(x); } template static inline void vec_unary_op(int64_t n, dst_t * y, const src0_t * x) { constexpr auto src0_to_f32 = type_conversion_table::to_f32; constexpr auto f32_to_dst = type_conversion_table::from_f32; for (int i = 0; i < n; i++) { y[i] = f32_to_dst(op(src0_to_f32(x[i]))); } } template static void apply_unary_op(const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(ggml_is_contiguous_1(src0) && ggml_is_contiguous_1(dst) && ggml_are_same_shape(src0, dst)); GGML_TENSOR_UNARY_OP_LOCALS GGML_ASSERT( nb0 == sizeof(dst_t)); GGML_ASSERT(nb00 == sizeof(src0_t)); const auto [ir0, ir1] = get_thread_range(params, src0); for (int64_t ir = ir0; ir < ir1; ++ir) { const int64_t i03 = ir/(ne02*ne01); const int64_t i02 = (ir - i03*ne02*ne01)/ne01; const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); dst_t * dst_ptr = (dst_t *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 ); const src0_t * src0_ptr = (const src0_t *) ((const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); vec_unary_op(ne0, dst_ptr, src0_ptr); } } // TODO: Use the 'traits' lookup table (for type conversion fns), instead of a mass of 'if' conditions with long templates template static void unary_op(const ggml_compute_params * params, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; /* */ if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { // all f32 apply_unary_op(params, dst); } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { // all f16 apply_unary_op(params, dst); } else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_BF16) { // all bf16 apply_unary_op(params, dst); } else if (src0->type == GGML_TYPE_BF16 && dst->type == GGML_TYPE_F32) { apply_unary_op(params, dst); } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { apply_unary_op(params, dst); } else { fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s\n", __func__, ggml_type_name(dst->type), ggml_type_name(src0->type)); GGML_ABORT("fatal error"); } } void ggml_compute_forward_abs(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_sgn(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_neg(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_step(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_tanh(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_elu(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_relu(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_sigmoid(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_hardsigmoid(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_exp(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_hardswish(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_sqr(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_sqrt(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_sin(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_cos(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); } void ggml_compute_forward_log(const ggml_compute_params * params, ggml_tensor * dst) { unary_op(params, dst); }