// Vectorized functions for fundamental operations #pragma once #include "ggml-impl.h" #include "simd-mappings.h" #include "ggml.h" #if defined(GGML_USE_ACCELERATE) #include #endif // floating point type used to accumulate sums typedef double ggml_float; #define GGML_GELU_FP16 #define GGML_GELU_QUICK_FP16 #define GGML_SOFT_MAX_UNROLL 4 #define GGML_VEC_DOT_UNROLL 2 #define GGML_VEC_MAD_UNROLL 32 #ifdef __cplusplus extern "C" { #endif // // global data // // precomputed gelu table for f16 (128 KB) extern ggml_fp16_t ggml_table_gelu_f16[1 << 16]; // precomputed quick gelu table for f16 (128 KB) extern ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16]; // // fundamental operations // void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc); void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc); void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc); void ggml_vec_silu_f32(const int n, float * y, const float * x); ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max); ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max); inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; } inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; } inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } inline static void ggml_vec_cpy_i32(const int n, int32_t * y, const int32_t * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; } inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const ggml_fp16_t v) { for (int i = 0; i < n; ++i) x[i] = v; } inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; } inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; } inline static void ggml_vec_add_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) { for (int i = 0; i < n; ++i) { z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) + GGML_FP16_TO_FP32(y[i])); } } inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; } inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; } inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; } inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; } inline static void ggml_vec_sub_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) { for (int i = 0; i < n; ++i) { z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) - GGML_FP16_TO_FP32(y[i])); } } inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; } inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; } inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; } inline static void ggml_vec_neg_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(-GGML_FP16_TO_FP32(x[i])); } } inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; } inline static void ggml_vec_mul_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) { for (int i = 0; i < n; ++i) { z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) * GGML_FP16_TO_FP32(y[i])); } } inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } inline static void ggml_vec_div_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) { for (int i = 0; i < n; ++i) { z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) / GGML_FP16_TO_FP32(y[i])); } } // compute GGML_VEC_DOT_UNROLL dot products at once // xs - x row stride in bytes inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GGML_RESTRICT s, void * GGML_RESTRICT xv, ggml_fp16_t * GGML_RESTRICT y) { ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 }; ggml_fp16_t * GGML_RESTRICT x[GGML_VEC_DOT_UNROLL]; for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) { x[i] = (ggml_fp16_t *) ((char *) xv + i*xs); } #if defined(GGML_SIMD) const int np = (n & ~(GGML_F16_STEP - 1)); GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } }; GGML_F16_VEC ax[GGML_F16_ARR]; GGML_F16_VEC ay[GGML_F16_ARR]; for (int i = 0; i < np; i += GGML_F16_STEP) { for (int j = 0; j < GGML_F16_ARR; j++) { ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j); sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]); } } } // reduce sum0..sum3 to sum0 for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { GGML_F16_VEC_REDUCE(sumf[k], sum[k]); } // leftovers for (int i = np; i < n; ++i) { for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i])); } } #else for (int i = 0; i < n; ++i) { for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i])); } } #endif for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) { s[i] = (float)sumf[i]; } } inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) { #if defined(GGML_SIMD) const int np = (n & ~(GGML_F32_STEP - 1)); GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); GGML_F32_VEC ax[GGML_F32_ARR]; GGML_F32_VEC ay[GGML_F32_ARR]; for (int i = 0; i < np; i += GGML_F32_STEP) { for (int j = 0; j < GGML_F32_ARR; j++) { ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx); GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); } } // leftovers for (int i = np; i < n; ++i) { y[i] += x[i]*v; } #else // scalar for (int i = 0; i < n; ++i) { y[i] += x[i]*v; } #endif } inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) { #if defined(GGML_SIMD) const int np = (n & ~(GGML_F16_STEP - 1)); GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); GGML_F16_VEC ax[GGML_F16_ARR]; GGML_F16_VEC ay[GGML_F16_ARR]; for (int i = 0; i < np; i += GGML_F16_STEP) { for (int j = 0; j < GGML_F16_ARR; j++) { ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx); GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); } } // leftovers for (int i = np; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v); } #else // scalar for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v); } #endif } // xs and vs are byte strides of x and v inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * GGML_RESTRICT y, const float * GGML_RESTRICT xv, const float * GGML_RESTRICT vv) { const float * GGML_RESTRICT x[GGML_VEC_MAD_UNROLL]; const float * GGML_RESTRICT v[GGML_VEC_MAD_UNROLL]; for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) { x[i] = (const float *) ((const char *) xv + i*xs); v[i] = (const float *) ((const char *) vv + i*vs); } #if defined(GGML_SIMD) const int np = (n & ~(GGML_F32_STEP - 1)); GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL]; for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { vx[k] = GGML_F32_VEC_SET1(v[k][0]); } GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR]; GGML_F32_VEC ay[GGML_F32_ARR]; for (int i = 0; i < np; i += GGML_F32_STEP) { for (int j = 0; j < GGML_F32_ARR; j++) { ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR); ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]); } GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); } } // leftovers for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { for (int i = np; i < n; ++i) { y[i] += x[k][i]*v[k][0]; } } #else // scalar for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { for (int i = 0; i < n; ++i) { y[i] += x[k][i]*v[k][0]; } } #endif } //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; } inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { #if defined(GGML_USE_ACCELERATE) vDSP_vsmul(y, 1, &v, y, 1, n); #elif defined(GGML_SIMD) const int np = (n & ~(GGML_F32_STEP - 1)); GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); GGML_F32_VEC ay[GGML_F32_ARR]; for (int i = 0; i < np; i += GGML_F32_STEP) { for (int j = 0; j < GGML_F32_ARR; j++) { ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); ay[j] = GGML_F32_VEC_MUL(ay[j], vx); GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); } } // leftovers for (int i = np; i < n; ++i) { y[i] *= v; } #else // scalar for (int i = 0; i < n; ++i) { y[i] *= v; } #endif } inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) { #if defined(GGML_SIMD) const int np = (n & ~(GGML_F16_STEP - 1)); GGML_F16_VEC vx = GGML_F16_VEC_SET1(v); GGML_F16_VEC ay[GGML_F16_ARR]; for (int i = 0; i < np; i += GGML_F16_STEP) { for (int j = 0; j < GGML_F16_ARR; j++) { ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); ay[j] = GGML_F16_VEC_MUL(ay[j], vx); GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j); } } // leftovers for (int i = np; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v); } #else // scalar for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v); } #endif } inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); } inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } inline static void ggml_vec_sqr_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { float v = GGML_FP16_TO_FP32(x[i]); y[i] = GGML_FP32_TO_FP16(v*v); } } inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); } inline static void ggml_vec_sqrt_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(sqrtf(GGML_FP16_TO_FP32(x[i]))); } } inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); } inline static void ggml_vec_log_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(logf(GGML_FP16_TO_FP32(x[i]))); } } inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); } inline static void ggml_vec_sin_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(sinf(GGML_FP16_TO_FP32(x[i]))); } } inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); } inline static void ggml_vec_cos_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(cosf(GGML_FP16_TO_FP32(x[i]))); } } inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); } inline static void ggml_vec_abs_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(fabsf(GGML_FP16_TO_FP32(x[i]))); } } inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } inline static void ggml_vec_sgn_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { float v = GGML_FP16_TO_FP32(x[i]); y[i] = GGML_FP32_TO_FP16((v > 0.f) ? 1.f : ((v < 0.f) ? -1.f : 0.f)); } } inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } inline static void ggml_vec_step_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16((GGML_FP16_TO_FP32(x[i]) > 0.f) ? 1.f : 0.f); } } inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); } inline static void ggml_vec_tanh_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(tanhf(GGML_FP16_TO_FP32(x[i]))); } } inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); } inline static void ggml_vec_elu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(expm1f(GGML_FP16_TO_FP32(x[i]))); } } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } inline static void ggml_vec_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { float v = GGML_FP16_TO_FP32(x[i]); y[i] = GGML_FP32_TO_FP16((v > 0.f) ? v : 0.f); } } inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); } inline static void ggml_vec_leaky_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const float ns) { for (int i = 0; i < n; ++i) { float v = GGML_FP16_TO_FP32(x[i]); y[i] = GGML_FP32_TO_FP16(((v > 0.f) ? v : 0.f) + ns * ((v < 0.0f) ? v : 0.f)); } } inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); } inline static void ggml_vec_sigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(1.f / (1.f + expf(-GGML_FP16_TO_FP32(x[i])))); } } // TODO: optimize performance inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } inline static void ggml_vec_hardswish_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { float v = GGML_FP16_TO_FP32(x[i]); y[i] = GGML_FP32_TO_FP16(v * fminf(1.0f, fmaxf(0.0f, (v + 3.0f) / 6.0f))); } } inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } inline static void ggml_vec_hardsigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(fminf(1.0f, fmaxf(0.0f, (GGML_FP16_TO_FP32(x[i]) + 3.0f) / 6.0f))); } } inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); } inline static void ggml_vec_exp_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = GGML_FP32_TO_FP16(expf(GGML_FP16_TO_FP32(x[i]))); } } static const float GELU_COEF_A = 0.044715f; static const float GELU_QUICK_COEF = -1.702f; static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; inline static float ggml_gelu_f32(float x) { return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); } inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { const uint16_t * i16 = (const uint16_t *) x; for (int i = 0; i < n; ++i) { y[i] = ggml_table_gelu_f16[i16[i]]; } } #ifdef GGML_GELU_FP16 inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { uint16_t t; for (int i = 0; i < n; ++i) { if (x[i] <= -10.0f) { y[i] = 0.0f; } else if (x[i] >= 10.0f) { y[i] = x[i]; } else { ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); memcpy(&t, &fp16, sizeof(uint16_t)); y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]); } } } #else inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) { y[i] = ggml_gelu_f32(x[i]); } } #endif inline static float ggml_gelu_quick_f32(float x) { return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x))); } //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { // const uint16_t * i16 = (const uint16_t *) x; // for (int i = 0; i < n; ++i) { // y[i] = ggml_table_gelu_quick_f16[i16[i]]; // } //} #ifdef GGML_GELU_QUICK_FP16 inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) { uint16_t t; for (int i = 0; i < n; ++i) { ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); memcpy(&t, &fp16, sizeof(uint16_t)); y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]); } } #else inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) { y[i] = ggml_gelu_quick_f32(x[i]); } } #endif inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { float v = GGML_FP16_TO_FP32(x[i]); y[i] = GGML_FP32_TO_FP16(v*(1.0f/(1.0f+expf(GELU_QUICK_COEF*v)))); } } // Sigmoid Linear Unit (SiLU) function inline static float ggml_silu_f32(float x) { return x/(1.0f + expf(-x)); } inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) { float v = GGML_FP16_TO_FP32(x); return GGML_FP32_TO_FP16(v/(1.0f + expf(-v))); } #if __FINITE_MATH_ONLY__ #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix" #error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461" #endif #if defined(__ARM_NEON) && defined(__aarch64__) // adapted from arm limited optimized routine // the maximum error is 1.45358 plus 0.5 ulps // numbers above 88.38 will flush to infinity // numbers beneath -103.97 will flush to zero inline static float32x4_t ggml_v_expf(float32x4_t x) { const float32x4_t r = vdupq_n_f32(0x1.8p23f); const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f)); const float32x4_t n = vsubq_f32(z, r); const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n, vdupq_n_f32(0x1.7f7d1cp-20f)); const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23); const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1)))); const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126)); const float32x4_t u = vmulq_f32(b, b); const float32x4_t j = vfmaq_f32( vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b), vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b), vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u); if (!vpaddd_u64(vreinterpretq_u64_u32(c))) return vfmaq_f32(k, j, k); const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000)); const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000))); const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d)); return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1), vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j))); } // computes silu x/(1+exp(-x)) in single precision vector inline static float32x4_t ggml_v_silu(float32x4_t x) { const float32x4_t one = vdupq_n_f32(1.0f); const float32x4_t zero = vdupq_n_f32(0.0f); const float32x4_t neg_x = vsubq_f32(zero, x); const float32x4_t exp_neg_x = ggml_v_expf(neg_x); const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x); return vdivq_f32(x, one_plus_exp_neg_x); } #elif defined(__AVX512F__) && defined(__AVX512DQ__) // adapted from arm limited optimized routine // the maximum error is 1.45358 plus 0.5 ulps // numbers above 88.38 will flush to infinity // numbers beneath -103.97 will flush to zero inline static __m512 ggml_v_expf(__m512 x) { const __m512 r = _mm512_set1_ps(0x1.8p23f); const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r); const __m512 n = _mm512_sub_ps(z, r); const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f), _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x)); const __mmask16 d = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ); const __m512 u = _mm512_mul_ps(b, b); const __m512 j = _mm512_fmadd_ps( _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b, _mm512_set1_ps(0x1.573e2ep-5f)), u, _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b, _mm512_set1_ps(0x1.fffdb6p-2f))), u, _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F))); const __m512 res = _mm512_scalef_ps(j, n); if (_mm512_kortestz(d, d)) return res; const __m512 zero = _mm512_setzero_ps(); const __m512 alt = _mm512_mask_blend_ps( _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero); return _mm512_mask_blend_ps(d, res, alt); } // computes silu x/(1+exp(-x)) in single precision vector inline static __m512 ggml_v_silu(__m512 x) { const __m512 one = _mm512_set1_ps(1); const __m512 zero = _mm512_setzero_ps(); const __m512 neg_x = _mm512_sub_ps(zero, x); const __m512 exp_neg_x = ggml_v_expf(neg_x); const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x); return _mm512_div_ps(x, one_plus_exp_neg_x); } #elif defined(__AVX2__) && defined(__FMA__) // adapted from arm limited optimized routine // the maximum error is 1.45358 plus 0.5 ulps // numbers above 88.38 will flush to infinity // numbers beneath -103.97 will flush to zero inline static __m256 ggml_v_expf(__m256 x) { const __m256 r = _mm256_set1_ps(0x1.8p23f); const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r); const __m256 n = _mm256_sub_ps(z, r); const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f), _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x)); const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23); const __m256 k = _mm256_castsi256_ps( _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1)))); const __m256i c = _mm256_castps_si256( _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n), _mm256_set1_ps(126), _CMP_GT_OQ)); const __m256 u = _mm256_mul_ps(b, b); const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b, _mm256_set1_ps(0x1.573e2ep-5f)), u, _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b, _mm256_set1_ps(0x1.fffdb6p-2f))), u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b)); if (!_mm256_movemask_ps(_mm256_castsi256_ps(c))) return _mm256_fmadd_ps(j, k, k); const __m256i g = _mm256_and_si256( _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)), _mm256_set1_epi32(0x82000000u)); const __m256 s1 = _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u))); const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g)); const __m256i d = _mm256_castps_si256( _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n), _mm256_set1_ps(192), _CMP_GT_OQ)); return _mm256_or_ps( _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)), _mm256_andnot_ps( _mm256_castsi256_ps(d), _mm256_or_ps( _mm256_and_ps(_mm256_castsi256_ps(c), _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)), _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k))))); } // computes silu x/(1+exp(-x)) in single precision vector inline static __m256 ggml_v_silu(__m256 x) { const __m256 one = _mm256_set1_ps(1); const __m256 zero = _mm256_setzero_ps(); const __m256 neg_x = _mm256_sub_ps(zero, x); const __m256 exp_neg_x = ggml_v_expf(neg_x); const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x); return _mm256_div_ps(x, one_plus_exp_neg_x); } #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON #if defined(__FMA__) #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z) #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z) #else #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z) #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y)) #endif // adapted from arm limited optimized routine // the maximum error is 1.45358 plus 0.5 ulps // numbers above 88.38 will flush to infinity // numbers beneath -103.97 will flush to zero inline static __m128 ggml_v_expf(__m128 x) { const __m128 r = _mm_set1_ps(0x1.8p23f); const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r); const __m128 n = _mm_sub_ps(z, r); const __m128 b = NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x)); const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23); const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1)))); const __m128i c = _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126))); const __m128 u = _mm_mul_ps(b, b); const __m128 j = MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u, MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))), u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b)); if (!_mm_movemask_epi8(c)) return MADD128(j, k, k); const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())), _mm_set1_epi32(0x82000000u)); const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u))); const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g)); const __m128i d = _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192))); return _mm_or_ps( _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)), _mm_andnot_ps(_mm_castsi128_ps(d), _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)), _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k))))); } // computes silu x/(1+exp(-x)) in single precision vector inline static __m128 ggml_v_silu(__m128 x) { const __m128 one = _mm_set1_ps(1); const __m128 zero = _mm_setzero_ps(); const __m128 neg_x = _mm_sub_ps(zero, x); const __m128 exp_neg_x = ggml_v_expf(neg_x); const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x); return _mm_div_ps(x, one_plus_exp_neg_x); } #endif // __ARM_NEON / __AVX2__ / __SSE2__ inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { for (int i = 0; i < n; ++i) { y[i] = ggml_silu_f16(x[i]); } } inline static float ggml_silu_backward_f32(float x, float dy) { const float s = 1.0f/(1.0f + expf(-x)); return dy*s*(1.0f + x*(1.0f - s)); } inline static ggml_fp16_t ggml_silu_backward_f16(ggml_fp16_t x, ggml_fp16_t dy) { const float v = GGML_FP16_TO_FP32(x); const float s = 1.0f/(1.0f + expf(-v)); return GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(dy)*s*(1.0f + v*(1.0f - s))); } inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) { for (int i = 0; i < n; ++i) { dx[i] = ggml_silu_backward_f32(x[i], dy[i]); } } inline static void ggml_vec_silu_backward_f16(const int n, ggml_fp16_t * dx, const ggml_fp16_t * x, const ggml_fp16_t * dy) { for (int i = 0; i < n; ++i) { dx[i] = ggml_silu_backward_f16(x[i], dy[i]); } } inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) { #ifndef GGML_USE_ACCELERATE ggml_float sum = 0.0; for (int i = 0; i < n; ++i) { sum += (ggml_float)x[i]; } *s = (float)sum; #else vDSP_sve(x, 1, s, n); #endif } inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) { ggml_float sum = 0.0; for (int i = 0; i < n; ++i) { sum += (ggml_float)x[i]; } *s = sum; } inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) { float sum = 0.0f; for (int i = 0; i < n; ++i) { sum += GGML_FP16_TO_FP32(x[i]); } *s = sum; } inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) { float sum = 0.0f; for (int i = 0; i < n; ++i) { sum += GGML_BF16_TO_FP32(x[i]); } *s = sum; } inline static void ggml_vec_max_f32(const int n, float * s, const float * x) { #ifndef GGML_USE_ACCELERATE float max = -INFINITY; for (int i = 0; i < n; ++i) { max = MAX(max, x[i]); } *s = max; #else vDSP_maxv(x, 1, s, n); #endif } inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { ggml_vec_norm_f32(n, s, x); *s = 1.f/(*s); } inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) { float max = -INFINITY; int idx = 0; for (int i = 0; i < n; ++i) { max = MAX(max, x[i]); if (max == x[i]) { idx = i; } } *s = idx; } #ifdef __cplusplus } #endif