#include "vec.h" #include // precomputed gelu table for f16 (128 KB) ggml_fp16_t ggml_table_gelu_f16[1 << 16]; // precomputed quick gelu table for f16 (128 KB) ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16]; void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc) { assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); #if defined(GGML_SIMD) float sumf = 0.0f; #if defined(__ARM_FEATURE_SVE) const int sve_register_length = ggml_cpu_get_sve_cnt() * 8; const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16 const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers const int np = (n & ~(ggml_f32_step - 1)); svfloat32_t sum1 = svdup_n_f32(0.0f); svfloat32_t sum2 = svdup_n_f32(0.0f); svfloat32_t sum3 = svdup_n_f32(0.0f); svfloat32_t sum4 = svdup_n_f32(0.0f); svfloat32_t sum5 = svdup_n_f32(0.0f); svfloat32_t sum6 = svdup_n_f32(0.0f); svfloat32_t sum7 = svdup_n_f32(0.0f); svfloat32_t sum8 = svdup_n_f32(0.0f); svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8; svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8; for (int i = 0; i < np; i += ggml_f32_step) { ax1 = GGML_F32_VEC_LOAD(x + i); ay1 = GGML_F32_VEC_LOAD(y + i); sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1); ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr); ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr); sum2 = GGML_F32_VEC_FMA(ax2, ay2, sum2); ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr); ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr); sum3 = GGML_F32_VEC_FMA(ax3, ay3, sum3); ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr); ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr); sum4 = GGML_F32_VEC_FMA(ax4, ay4, sum4); ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr); ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr); sum5 = GGML_F32_VEC_FMA(ax5, ay5, sum5); ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr); ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr); sum6 = GGML_F32_VEC_FMA(ax6, ay6, sum6); ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr); ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr); sum7 = GGML_F32_VEC_FMA(ax7, ay7, sum7); ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr); ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr); sum8 = GGML_F32_VEC_FMA(ax8, ay8, sum8); } // leftovers // Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop const int np2 = (n & ~(ggml_f32_epr - 1)); for (int i = np; i < np2; i += ggml_f32_epr) { ax1 = GGML_F32_VEC_LOAD(x + i); ay1 = GGML_F32_VEC_LOAD(y + i); sum1 = GGML_F32_VEC_FMA(ax1, ay1, sum1); } // maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only if (np2 < n) { svbool_t pg = svwhilelt_b32(np2, n); ax1 = svld1_f32(pg, x + np2); ay1 = svld1_f32(pg, y + np2); sum1 = svmad_f32_m(pg, ax1, ay1, sum1); } // reduce sum1,sum2 to sum1 GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8); #else const int np = (n & ~(GGML_F32_STEP - 1)); GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; GGML_F32_VEC ax[GGML_F32_ARR]; GGML_F32_VEC ay[GGML_F32_ARR]; for (int i = 0; i < np; i += GGML_F32_STEP) { for (int j = 0; j < GGML_F32_ARR; j++) { ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]); } } // reduce sum0..sum3 to sum0 GGML_F32_VEC_REDUCE(sumf, sum); // leftovers for (int i = np; i < n; ++i) { sumf += x[i]*y[i]; } #endif #else // scalar ggml_float sumf = 0.0; for (int i = 0; i < n; ++i) { sumf += (ggml_float)(x[i]*y[i]); } #endif *s = sumf; } void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc) { assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); int i = 0; ggml_float sumf = 0; #if defined(__AVX512BF16__) __m512 c1 = _mm512_setzero_ps(); __m512 c2 = _mm512_setzero_ps(); for (; i + 64 <= n; i += 64) { c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))), m512bh(_mm512_loadu_si512((y + i)))); c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))), m512bh(_mm512_loadu_si512((y + i + 32)))); } sumf += (ggml_float)_mm512_reduce_add_ps(c1); sumf += (ggml_float)_mm512_reduce_add_ps(c2); #elif defined(__AVX512F__) #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16)) __m512 c1 = _mm512_setzero_ps(); __m512 c2 = _mm512_setzero_ps(); for (; i + 32 <= n; i += 32) { c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1); c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2); } sumf += (ggml_float)_mm512_reduce_add_ps(c1); sumf += (ggml_float)_mm512_reduce_add_ps(c2); #undef LOAD #elif defined(__AVX2__) || defined(__AVX__) #if defined(__AVX2__) #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)) #else #define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1)) #endif __m256 c1 = _mm256_setzero_ps(); __m256 c2 = _mm256_setzero_ps(); __m256 c3 = _mm256_setzero_ps(); __m256 c4 = _mm256_setzero_ps(); for (; i + 32 <= n; i += 32) { c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1); c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2); c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3); c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4); } __m128 g; c1 = _mm256_add_ps(_mm256_add_ps(c1, c3), _mm256_add_ps(c2, c4)); g = _mm_add_ps(_mm256_extractf128_ps(c1, 1), _mm256_castps256_ps128(c1)); g = _mm_add_ps(g, _mm_movehl_ps(g, g)); g = _mm_add_ss(g, _mm_movehdup_ps(g)); sumf += (ggml_float)_mm_cvtss_f32(g); #undef LOAD #endif for (; i < n; ++i) { sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) * GGML_BF16_TO_FP32(y[i])); } *s = sumf; } void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc) { assert(nrc == 1); GGML_UNUSED(nrc); GGML_UNUSED(bx); GGML_UNUSED(by); GGML_UNUSED(bs); ggml_float sumf = 0.0; #if defined(GGML_SIMD) const int np = (n & ~(GGML_F16_STEP - 1)); GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO }; GGML_F16_VEC ax[GGML_F16_ARR]; GGML_F16_VEC ay[GGML_F16_ARR]; for (int i = 0; i < np; i += GGML_F16_STEP) { for (int j = 0; j < GGML_F16_ARR; j++) { ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]); } } // reduce sum0..sum3 to sum0 GGML_F16_VEC_REDUCE(sumf, sum); // leftovers for (int i = np; i < n; ++i) { sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i])); } #else for (int i = 0; i < n; ++i) { sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i])); } #endif *s = sumf; } void ggml_vec_silu_f32(const int n, float * y, const float * x) { int i = 0; #if defined(__AVX512F__) && defined(__AVX512DQ__) for (; i + 15 < n; i += 16) { _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i))); } #elif defined(__AVX2__) && defined(__FMA__) for (; i + 7 < n; i += 8) { _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i))); } #elif defined(__SSE2__) for (; i + 3 < n; i += 4) { _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i))); } #elif defined(__ARM_NEON) && defined(__aarch64__) for (; i + 3 < n; i += 4) { vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i))); } #endif for (; i < n; ++i) { y[i] = ggml_silu_f32(x[i]); } } ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) { int i = 0; ggml_float sum = 0; #if defined(__AVX512F__) && defined(__AVX512DQ__) for (; i + 15 < n; i += 16) { __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i), _mm512_set1_ps(max))); _mm512_storeu_ps(y + i, val); sum += (ggml_float)_mm512_reduce_add_ps(val); } #elif defined(__AVX2__) && defined(__FMA__) for (; i + 7 < n; i += 8) { __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i), _mm256_set1_ps(max))); _mm256_storeu_ps(y + i, val); __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1), _mm256_castps256_ps128(val)); val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2)); val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2)); sum += (ggml_float)_mm_cvtss_f32(val2); } #elif defined(__SSE2__) for (; i + 3 < n; i += 4) { __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i), _mm_set1_ps(max))); _mm_storeu_ps(y + i, val); #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) val = _mm_add_ps(val, _mm_movehl_ps(val, val)); val = _mm_add_ss(val, _mm_movehdup_ps(val)); #else __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1)); val = _mm_add_ps(val, tmp); tmp = _mm_movehl_ps(tmp, val); val = _mm_add_ss(val, tmp); #endif sum += (ggml_float)_mm_cvtss_f32(val); } #elif defined(__ARM_NEON) && defined(__aarch64__) for (; i + 3 < n; i += 4) { float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i), vdupq_n_f32(max))); vst1q_f32(y + i, val); sum += (ggml_float)vaddvq_f32(val); } #endif for (; i < n; ++i) { float val = expf(x[i] - max); sum += (ggml_float)val; y[i] = val; } return sum; } ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) { // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i) int i = 0; ggml_float sum = 0; for (; i < n; ++i) { float val = x[i] - max; y[i] = val; sum += (ggml_float)expf(val); } return sum = (ggml_float)logf(sum); }