![]() * ggml: add s390x ARCH_FLAGS for compilation
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: add SIMD for s390x using vector intrinsics
SIMD is activated for:
* ggml_vec_dot_f32
* ggml_vec_dot_f16
* ggml_vec_mad_f32
* ggml_vec_mad_f16
* ggml_vec_mad_f32_unroll
* ggml_vec_scale_f32
* ggml_vec_scale_f16
SIMD is NOT activated for:
* ggml_vec_dot_f16_unroll (pending bugfix)
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix missing escape character in GGML_F32x4_REDUCE
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: add temporary patch for GGML_F32_ARR and GGML_F16_ARR
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix s390x GGML_F32x4_REDUCE
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: full SIMD activation for F32,F16 s390x
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: add option to disable s390x VXE/VXE2
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: change vecintrin.h include to ggml-cpu-impl
* add __VXE__ and __VXE2__ macros
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* cmake: add s390x target detection for VX/VXE/VXE2
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: move s390x vector intrinsics to ggml-cpu-impl.h
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x Q8_0 SIMD
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: correct documentation for Q8_0
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x reduce code complexity Q8_0
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x bugfix typo Q8_0
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activated for Q4_1
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x inline vec_reve
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activation for Q4_0
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: add VXE backend feature
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: remove test.py
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activation for quantize_row_q8_0
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activation for quantize_row_q8_1
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activation for iq4_xs
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: bugfix iq4_xs
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activation for iq4_nl
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: add float, double, and long vector data type
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: clean up iq4_xs SIMD
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix improper use of restrict keyword
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: update warning message for ggml_vec_tbl
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: untested implementation of ggml_vec_dot_iq2_xxs_q8_K
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: update ggml_vec_dot_q4_1_q8_1 to use typedefs
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: switch to restrict for iq4_nl
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: slight dot product speed improvement for q4_1_q8_1
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activation for q6_K
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: add missing `_t` to ggml_int8x16x4_t
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix missing `_t` for ggml_vec_xl_s8x4
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix more missing `_t`
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: add unroll and prefetch to Q8_0
increase of 3.86% for prompt processing and 32.22% for token generation
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: patch Q8_0 to use proper vector sizes
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: optimise Q8_0 dot prod compute kernel further
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: add unroll and prefetch to Q4_1
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: refactor Q6_K variable naming for readability
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix Q6_K typos
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activation for Q5_K
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix wrong char*x16_t naming
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: Q5_K y0 wrong signness
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix Q5_K invalid uchar type
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix Q5_K invalid uchar type
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: s390x SIMD activation for Q4_K
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: fix Q4_K invalid vector intrinsics
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: simplify ggml_padd_s16 compute kernel
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: correct ggml-cpu vxe wording
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: change ggml_aligned_malloc alignment to 256
256 is the cache line size for s390x platforms
Signed-off-by: Aaron Teo <aaron.teo1@ibm.com>
* ggml: resolve pr merge via cherry-pick
|
||
---|---|---|
.devops | ||
.github | ||
ci | ||
cmake | ||
common | ||
docs | ||
examples | ||
ggml | ||
gguf-py | ||
grammars | ||
include | ||
media | ||
models | ||
pocs | ||
prompts | ||
requirements | ||
scripts | ||
Sources/llama | ||
spm-headers | ||
src | ||
tests | ||
.clang-format | ||
.clang-tidy | ||
.dockerignore | ||
.ecrc | ||
.editorconfig | ||
.flake8 | ||
.gitignore | ||
.gitmodules | ||
.pre-commit-config.yaml | ||
AUTHORS | ||
CMakeLists.txt | ||
CMakePresets.json | ||
CODEOWNERS | ||
CONTRIBUTING.md | ||
convert_hf_to_gguf.py | ||
convert_hf_to_gguf_update.py | ||
convert_llama_ggml_to_gguf.py | ||
convert_lora_to_gguf.py | ||
flake.lock | ||
flake.nix | ||
LICENSE | ||
Makefile | ||
mypy.ini | ||
Package.swift | ||
poetry.lock | ||
pyproject.toml | ||
pyrightconfig.json | ||
README.md | ||
requirements.txt | ||
SECURITY.md |
llama.cpp
Roadmap / Project status / Manifesto / ggml
Inference of Meta's LLaMA model (and others) in pure C/C++
Important
New
llama.cpp
package location: ggml-org/llama.cppUpdate your container URLs to:
ghcr.io/ggml-org/llama.cpp
More info: https://github.com/ggml-org/llama.cpp/discussions/11801
Recent API changes
Hot topics
- How to use MTLResidencySet to keep the GPU memory active? https://github.com/ggml-org/llama.cpp/pull/11427
- VS Code extension for FIM completions: https://github.com/ggml-org/llama.vscode
- Universal tool call support in
llama-server
: https://github.com/ggml-org/llama.cpp/pull/9639 - Vim/Neovim plugin for FIM completions: https://github.com/ggml-org/llama.vim
- Introducing GGUF-my-LoRA https://github.com/ggml-org/llama.cpp/discussions/10123
- Hugging Face Inference Endpoints now support GGUF out of the box! https://github.com/ggml-org/llama.cpp/discussions/9669
- Hugging Face GGUF editor: discussion | tool
Description
The main goal of llama.cpp
is to enable LLM inference with minimal setup and state-of-the-art performance on a wide
range of hardware - locally and in the cloud.
- Plain C/C++ implementation without any dependencies
- Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
- AVX, AVX2, AVX512 and AMX support for x86 architectures
- 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
- Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP and Moore Threads MTT GPUs via MUSA)
- Vulkan and SYCL backend support
- CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
The llama.cpp
project is the main playground for developing new features for the ggml library.
Models
Typically finetunes of the base models below are supported as well.
Instructions for adding support for new models: HOWTO-add-model.md
Text-only
- LLaMA 🦙
- LLaMA 2 🦙🦙
- LLaMA 3 🦙🦙🦙
- Mistral 7B
- Mixtral MoE
- DBRX
- Falcon
- Chinese LLaMA / Alpaca and Chinese LLaMA-2 / Alpaca-2
- Vigogne (French)
- BERT
- Koala
- Baichuan 1 & 2 + derivations
- Aquila 1 & 2
- Starcoder models
- Refact
- MPT
- Bloom
- Yi models
- StableLM models
- Deepseek models
- Qwen models
- PLaMo-13B
- Phi models
- PhiMoE
- GPT-2
- Orion 14B
- InternLM2
- CodeShell
- Gemma
- Mamba
- Grok-1
- Xverse
- Command-R models
- SEA-LION
- GritLM-7B + GritLM-8x7B
- OLMo
- OLMo 2
- OLMoE
- Granite models
- GPT-NeoX + Pythia
- Snowflake-Arctic MoE
- Smaug
- Poro 34B
- Bitnet b1.58 models
- Flan T5
- Open Elm models
- ChatGLM3-6b + ChatGLM4-9b + GLMEdge-1.5b + GLMEdge-4b
- SmolLM
- EXAONE-3.0-7.8B-Instruct
- FalconMamba Models
- Jais
- Bielik-11B-v2.3
- RWKV-6
- QRWKV-6
- GigaChat-20B-A3B
Multimodal
Bindings
- Python: abetlen/llama-cpp-python
- Go: go-skynet/go-llama.cpp
- Node.js: withcatai/node-llama-cpp
- JS/TS (llama.cpp server client): lgrammel/modelfusion
- JS/TS (Programmable Prompt Engine CLI): offline-ai/cli
- JavaScript/Wasm (works in browser): tangledgroup/llama-cpp-wasm
- Typescript/Wasm (nicer API, available on npm): ngxson/wllama
- Ruby: yoshoku/llama_cpp.rb
- Rust (more features): edgenai/llama_cpp-rs
- Rust (nicer API): mdrokz/rust-llama.cpp
- Rust (more direct bindings): utilityai/llama-cpp-rs
- Rust (automated build from crates.io): ShelbyJenkins/llm_client
- C#/.NET: SciSharp/LLamaSharp
- C#/VB.NET (more features - community license): LM-Kit.NET
- Scala 3: donderom/llm4s
- Clojure: phronmophobic/llama.clj
- React Native: mybigday/llama.rn
- Java: kherud/java-llama.cpp
- Zig: deins/llama.cpp.zig
- Flutter/Dart: netdur/llama_cpp_dart
- Flutter: xuegao-tzx/Fllama
- PHP (API bindings and features built on top of llama.cpp): distantmagic/resonance (more info)
- Guile Scheme: guile_llama_cpp
- Swift srgtuszy/llama-cpp-swift
- Swift ShenghaiWang/SwiftLlama
UIs
(to have a project listed here, it should clearly state that it depends on llama.cpp
)
- AI Sublime Text plugin (MIT)
- cztomsik/ava (MIT)
- Dot (GPL)
- eva (MIT)
- iohub/collama (Apache-2.0)
- janhq/jan (AGPL)
- KanTV (Apache-2.0)
- KodiBot (GPL)
- llama.vim (MIT)
- LARS (AGPL)
- Llama Assistant (GPL)
- LLMFarm (MIT)
- LLMUnity (MIT)
- LMStudio (proprietary)
- LocalAI (MIT)
- LostRuins/koboldcpp (AGPL)
- MindMac (proprietary)
- MindWorkAI/AI-Studio (FSL-1.1-MIT)
- Mobile-Artificial-Intelligence/maid (MIT)
- Mozilla-Ocho/llamafile (Apache-2.0)
- nat/openplayground (MIT)
- nomic-ai/gpt4all (MIT)
- ollama/ollama (MIT)
- oobabooga/text-generation-webui (AGPL)
- PocketPal AI (MIT)
- psugihara/FreeChat (MIT)
- ptsochantaris/emeltal (MIT)
- pythops/tenere (AGPL)
- ramalama (MIT)
- semperai/amica (MIT)
- withcatai/catai (MIT)
- Autopen (GPL)
Tools
- akx/ggify – download PyTorch models from HuggingFace Hub and convert them to GGML
- akx/ollama-dl – download models from the Ollama library to be used directly with llama.cpp
- crashr/gppm – launch llama.cpp instances utilizing NVIDIA Tesla P40 or P100 GPUs with reduced idle power consumption
- gpustack/gguf-parser - review/check the GGUF file and estimate the memory usage
- Styled Lines (proprietary licensed, async wrapper of inference part for game development in Unity3d with pre-built Mobile and Web platform wrappers and a model example)
Infrastructure
- Paddler - Stateful load balancer custom-tailored for llama.cpp
- GPUStack - Manage GPU clusters for running LLMs
- llama_cpp_canister - llama.cpp as a smart contract on the Internet Computer, using WebAssembly
- llama-swap - transparent proxy that adds automatic model switching with llama-server
- Kalavai - Crowdsource end to end LLM deployment at any scale
Games
- Lucy's Labyrinth - A simple maze game where agents controlled by an AI model will try to trick you.
Supported backends
Backend | Target devices |
---|---|
Metal | Apple Silicon |
BLAS | All |
BLIS | All |
SYCL | Intel and Nvidia GPU |
MUSA | Moore Threads MTT GPU |
CUDA | Nvidia GPU |
HIP | AMD GPU |
Vulkan | GPU |
CANN | Ascend NPU |
OpenCL | Adreno GPU |
Building the project
The main product of this project is the llama
library. Its C-style interface can be found in include/llama.h.
The project also includes many example programs and tools using the llama
library. The examples range from simple, minimal code snippets to sophisticated sub-projects such as an OpenAI-compatible HTTP server. Possible methods for obtaining the binaries:
- Clone this repository and build locally, see how to build
- On MacOS or Linux, install
llama.cpp
via brew, flox or nix - Use a Docker image, see documentation for Docker
- Download pre-built binaries from releases
Obtaining and quantizing models
The Hugging Face platform hosts a number of LLMs compatible with llama.cpp
:
You can either manually download the GGUF file or directly use any llama.cpp
-compatible models from Hugging Face by using this CLI argument: -hf <user>/<model>[:quant]
After downloading a model, use the CLI tools to run it locally - see below.
llama.cpp
requires the model to be stored in the GGUF file format. Models in other data formats can be converted to GGUF using the convert_*.py
Python scripts in this repo.
The Hugging Face platform provides a variety of online tools for converting, quantizing and hosting models with llama.cpp
:
- Use the GGUF-my-repo space to convert to GGUF format and quantize model weights to smaller sizes
- Use the GGUF-my-LoRA space to convert LoRA adapters to GGUF format (more info: https://github.com/ggml-org/llama.cpp/discussions/10123)
- Use the GGUF-editor space to edit GGUF meta data in the browser (more info: https://github.com/ggml-org/llama.cpp/discussions/9268)
- Use the Inference Endpoints to directly host
llama.cpp
in the cloud (more info: https://github.com/ggml-org/llama.cpp/discussions/9669)
To learn more about model quantization, read this documentation
llama-cli
A CLI tool for accessing and experimenting with most of llama.cpp
's functionality.
-
Run in conversation mode
Models with a built-in chat template will automatically activate conversation mode. If this doesn't occur, you can manually enable it by adding
-cnv
and specifying a suitable chat template with--chat-template NAME
llama-cli -m model.gguf # > hi, who are you? # Hi there! I'm your helpful assistant! I'm an AI-powered chatbot designed to assist and provide information to users like you. I'm here to help answer your questions, provide guidance, and offer support on a wide range of topics. I'm a friendly and knowledgeable AI, and I'm always happy to help with anything you need. What's on your mind, and how can I assist you today? # # > what is 1+1? # Easy peasy! The answer to 1+1 is... 2!
-
Run in conversation mode with custom chat template
# use the "chatml" template (use -h to see the list of supported templates) llama-cli -m model.gguf -cnv --chat-template chatml # use a custom template llama-cli -m model.gguf -cnv --in-prefix 'User: ' --reverse-prompt 'User:'
-
Run simple text completion
To disable conversation mode explicitly, use
-no-cnv
llama-cli -m model.gguf -p "I believe the meaning of life is" -n 128 -no-cnv # I believe the meaning of life is to find your own truth and to live in accordance with it. For me, this means being true to myself and following my passions, even if they don't align with societal expectations. I think that's what I love about yoga – it's not just a physical practice, but a spiritual one too. It's about connecting with yourself, listening to your inner voice, and honoring your own unique journey.
-
Constrain the output with a custom grammar
llama-cli -m model.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:' # {"appointmentTime": "8pm", "appointmentDetails": "schedule a a call"}
The grammars/ folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.
For authoring more complex JSON grammars, check out https://grammar.intrinsiclabs.ai/
llama-server
A lightweight, OpenAI API compatible, HTTP server for serving LLMs.
-
Start a local HTTP server with default configuration on port 8080
llama-server -m model.gguf --port 8080 # Basic web UI can be accessed via browser: http://localhost:8080 # Chat completion endpoint: http://localhost:8080/v1/chat/completions
-
Support multiple-users and parallel decoding
# up to 4 concurrent requests, each with 4096 max context llama-server -m model.gguf -c 16384 -np 4
-
Enable speculative decoding
# the draft.gguf model should be a small variant of the target model.gguf llama-server -m model.gguf -md draft.gguf
-
Serve an embedding model
# use the /embedding endpoint llama-server -m model.gguf --embedding --pooling cls -ub 8192
-
Serve a reranking model
# use the /reranking endpoint llama-server -m model.gguf --reranking
-
Constrain all outputs with a grammar
# custom grammar llama-server -m model.gguf --grammar-file grammar.gbnf # JSON llama-server -m model.gguf --grammar-file grammars/json.gbnf
llama-perplexity
A tool for measuring the perplexity 12 (and other quality metrics) of a model over a given text.
-
Measure the perplexity over a text file
llama-perplexity -m model.gguf -f file.txt # [1]15.2701,[2]5.4007,[3]5.3073,[4]6.2965,[5]5.8940,[6]5.6096,[7]5.7942,[8]4.9297, ... # Final estimate: PPL = 5.4007 +/- 0.67339
-
Measure KL divergence
# TODO
llama-bench
Benchmark the performance of the inference for various parameters.
-
Run default benchmark
llama-bench -m model.gguf # Output: # | model | size | params | backend | threads | test | t/s | # | ------------------- | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | pp512 | 5765.41 ± 20.55 | # | qwen2 1.5B Q4_0 | 885.97 MiB | 1.54 B | Metal,BLAS | 16 | tg128 | 197.71 ± 0.81 | # # build: 3e0ba0e60 (4229)
llama-run
A comprehensive example for running llama.cpp
models. Useful for inferencing. Used with RamaLama 3.
-
Run a model with a specific prompt (by default it's pulled from Ollama registry)
llama-run granite-code
llama-simple
A minimal example for implementing apps with llama.cpp
. Useful for developers.
-
Basic text completion
llama-simple -m model.gguf # Hello my name is Kaitlyn and I am a 16 year old girl. I am a junior in high school and I am currently taking a class called "The Art of
Contributing
- Contributors can open PRs
- Collaborators can push to branches in the
llama.cpp
repo and merge PRs into themaster
branch - Collaborators will be invited based on contributions
- Any help with managing issues, PRs and projects is very appreciated!
- See good first issues for tasks suitable for first contributions
- Read the CONTRIBUTING.md for more information
- Make sure to read this: Inference at the edge
- A bit of backstory for those who are interested: Changelog podcast
Other documentation
Development documentation
Seminal papers and background on the models
If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:
- LLaMA:
- GPT-3
- GPT-3.5 / InstructGPT / ChatGPT:
Completions
Command-line completion is available for some environments.
Bash Completion
$ build/bin/llama-cli --completion-bash > ~/.llama-completion.bash
$ source ~/.llama-completion.bash
Optionally this can be added to your .bashrc
or .bash_profile
to load it
automatically. For example:
$ echo "source ~/.llama-completion.bash" >> ~/.bashrc