llama.cpp/ggml/src/ggml-cuda/rope.cu
Johannes Gäßler 9c8dcefe17
CUDA: backwards pass for misc. ops, add tests (#11257)
* CUDA: backwards pass for misc. ops, add tests

* remove restrict from pointers
2025-01-16 16:43:38 +01:00

456 lines
18 KiB
Text

#include "rope.cuh"
struct rope_corr_dims {
float v[2];
};
struct mrope_sections {
int v[4];
};
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
template<bool forward>
static __device__ void rope_yarn(
const float theta_extrap, const float freq_scale, const rope_corr_dims corr_dims, const int64_t i0, const float ext_factor,
float mscale, float & cos_theta, float & sin_theta) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
cos_theta = cosf(theta) * mscale;
sin_theta = sinf(theta) * mscale;
if (!forward) {
sin_theta *= -1.0f;
}
}
template<bool forward, bool has_ff, typename T>
static __global__ void rope_norm(
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
return;
}
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = row_dst*ne0 + i0;
const int ix = channel_x*s2 + row_x*s1 + i0;
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + 1];
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
dst[idst + 1] = x0*sin_theta + x1*cos_theta;
}
template<bool forward, bool has_ff, typename T>
static __global__ void rope_neox(
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
return;
}
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = row_dst*ne0 + i0/2;
const int ix = channel_x*s2 + row_x*s1 + i0/2;
const float theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims/2];
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
dst[idst + n_dims/2] = x0*sin_theta + x1*cos_theta;
}
template<bool forward, bool has_ff, typename T>
static __global__ void rope_multi(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2,
const int n_dims, const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float theta_scale, const float * freq_factors, const mrope_sections sections) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
return;
}
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
if (i0 >= n_dims) {
const int i = row_dst*ne0 + i0;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = row_dst*ne0 + i0/2;
const int ix = channel_x*s2 + row_x*s1 + i0/2;
const int sect_dims = sections.v[0] + sections.v[1] + sections.v[2] + sections.v[3];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
theta_base = pos[channel_x]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sections.v[0] && sector < sec_w) {
theta_base = pos[channel_x + ne2 * 1]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sec_w && sector < sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 2]*powf(theta_scale, i0/2.0f);
}
else if (sector >= sec_w + sections.v[2]) {
theta_base = pos[channel_x + ne2 * 3]*powf(theta_scale, i0/2.0f);
}
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims/2];
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
dst[idst + n_dims/2] = x0*sin_theta + x1*cos_theta;
}
template<bool forward, bool has_ff, typename T>
static __global__ void rope_vision(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims,
const int32_t * pos, const float freq_scale, const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
const float theta_scale, const float * freq_factors, const mrope_sections sections) {
const int i0 = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (i0 >= ne0) {
return;
}
const int row_dst = blockDim.x*blockIdx.x + threadIdx.x;
const int row_x = row_dst % ne1;
const int channel_x = row_dst / ne1;
const int idst = row_dst*ne0 + i0/2;
const int ix = channel_x*s2 + row_x*s1 + i0/2;
const int sect_dims = sections.v[0] + sections.v[1];
const int sec_w = sections.v[1] + sections.v[0];
const int sector = (i0 / 2) % sect_dims;
float theta_base = 0.0;
if (sector < sections.v[0]) {
const int p = sector;
theta_base = pos[channel_x]*powf(theta_scale, p);
}
else if (sector >= sections.v[0] && sector < sec_w) {
const int p = sector - sections.v[0];
theta_base = pos[channel_x + ne2]*powf(theta_scale, p);
}
const float freq_factor = has_ff ? freq_factors[i0/2] : 1.0f;
float cos_theta;
float sin_theta;
rope_yarn<forward>(theta_base/freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, cos_theta, sin_theta);
const float x0 = x[ix + 0];
const float x1 = x[ix + n_dims];
dst[idst + 0] = x0*cos_theta - x1*sin_theta;
dst[idst + n_dims] = x0*sin_theta + x1*cos_theta;
}
template<bool forward, typename T>
static void rope_norm_cuda(
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
if (freq_factors == nullptr) {
rope_norm<forward, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors);
} else {
rope_norm<forward, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors);
}
}
template<bool forward, typename T>
static void rope_neox_cuda(
const T * x, T * dst, const int ne0, const int ne1, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
if (freq_factors == nullptr) {
rope_neox<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors);
} else {
rope_neox<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors);
}
}
template<bool forward, typename T>
static void rope_multi_cuda(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
if (freq_factors == nullptr) {
rope_multi<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections);
} else {
rope_multi<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections);
}
}
template<bool forward, typename T>
static void rope_vision_cuda(
const T * x, T * dst, const int ne0, const int ne1, const int ne2, const int s1, const int s2, const int n_dims, const int nr,
const int32_t * pos, const float freq_scale, const float freq_base, const float ext_factor, const float attn_factor,
const rope_corr_dims corr_dims, const float * freq_factors, const mrope_sections sections, cudaStream_t stream) {
GGML_ASSERT(ne0 % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int n_blocks_x = (ne0 + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nr, n_blocks_x, 1);
// break down (head_dim, heads, seq) into (CUDA_ROPE_BLOCK_SIZE, x, heads * seq)
// where x ~= ceil(head_dim / CUDA_ROPE_BLOCK_SIZE);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
if (freq_factors == nullptr) {
rope_vision<forward, false, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections);
} else {
rope_vision<forward, true, T><<<block_nums, block_dims, 0, stream>>>(
x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor,
attn_factor, corr_dims, theta_scale, freq_factors, sections);
}
}
template <bool forward>
void ggml_cuda_op_rope_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
const int64_t ne00 = src0->ne[0]; // head dims
const int64_t ne01 = src0->ne[1]; // num heads
const int64_t ne02 = src0->ne[2]; // num heads
const int64_t nr = ggml_nrows(src0);
const size_t s01 = src0->nb[1] / ggml_type_size(src0->type);
const size_t s02 = src0->nb[2] / ggml_type_size(src0->type);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
//const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
mrope_sections sections;
// RoPE alteration for extended context
float freq_base;
float freq_scale;
float ext_factor;
float attn_factor;
float beta_fast;
float beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
memcpy(&sections.v, (int32_t *) dst->op_params + 11, sizeof(int)*4);
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
if (is_mrope) {
GGML_ASSERT(sections.v[0] > 0 || sections.v[1] > 0 || sections.v[2] > 0);
}
if (is_vision) {
GGML_ASSERT(n_dims == ne00/2);
}
const int32_t * pos = (const int32_t *) src1_d;
const float * freq_factors = nullptr;
if (src2 != nullptr) {
freq_factors = (const float *) src2->data;
}
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims.v);
// compute
if (is_neox) {
if (src0->type == GGML_TYPE_F32) {
rope_neox_cuda<forward>(
(const float *) src0_d, (float *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
} else if (src0->type == GGML_TYPE_F16) {
rope_neox_cuda<forward>(
(const half *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
} else {
GGML_ABORT("fatal error");
}
} else if (is_mrope && !is_vision) {
if (src0->type == GGML_TYPE_F32) {
rope_multi_cuda<forward>(
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
} else if (src0->type == GGML_TYPE_F16) {
rope_multi_cuda<forward>(
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
} else {
GGML_ABORT("fatal error");
}
} else if (is_vision) {
if (src0->type == GGML_TYPE_F32) {
rope_vision_cuda<forward>(
(const float *) src0_d, (float *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
} else if (src0->type == GGML_TYPE_F16) {
rope_vision_cuda<forward>(
(const half *) src0_d, (half *) dst_d, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, stream);
} else {
GGML_ABORT("fatal error");
}
} else {
if (src0->type == GGML_TYPE_F32) {
rope_norm_cuda<forward>(
(const float *) src0_d, (float *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
} else if (src0->type == GGML_TYPE_F16) {
rope_norm_cuda<forward>(
(const half *) src0_d, (half *) dst_d, ne00, ne01, s01, s02, n_dims, nr, pos, freq_scale,
freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
} else {
GGML_ABORT("fatal error");
}
}
}
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_rope_impl<true>(ctx, dst);
}
void ggml_cuda_op_rope_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_cuda_op_rope_impl<false>(ctx, dst);
}